Farklı Tuzluluk Stresi Koşullarının Lycopersicon esculentum Mill.’in Bazı Fizyolojik Gelişim Parametreleri Üzerine Etkileri

Lycopersicon esculentum Mill.’in bazı fizyolojik gelişim parametreleri üzerine Ca(NO3)2 ve MgSO4 tipi tuzluluğun etkilerini incelemeyi amaçlayan çalışmada, fotoperyodik indüksiyon altında L. esculentum Mill. cv. H-2274’ün çimlenme oranlarında tuz stresi etkilerinin ilk görülmeye başlandığı konsantrasyon değerleri her iki tuz tipi için de 2000 ppm’di. Karanlık şartlarda Ca(NO3)2 tuzluluğu 2000 ppm, MgSO4 tuzluluğu 5000 ppm’den itibaren toksik etkilerini hissettirdi. Aynı konsantrasyon değerleri etiolasyonun teşvik edildiği inkübasyon ortamlarında L. esculentum Mill. cv. 11D-230 içinde geçerliydi. Fotoperyot şartlarında ise Ca(NO3)2 tuzluluğu 200 ppm, MgSO4 tuzluluğu 500 ppm’den itibaren indirgeyici özelliklere sahipti. L. esculentum genotiplerine ait fideciklerde hipokotil, kök ve kotiledon yaş ağırlıklarında artan Ca(NO3)2 ve MgSO4 konsantrasyonlarının etkileri her iki tuz düzeyinde tüm konsantrasyon serileri açısından genel olarak değerlendirildiğinde, H-2274 fideciklerinde fotoperyodik indüksiyon altında hipokotil (t=3,187; p=0.002), kök (t=3,232; p=0.002) ve kotiledon yaş ağırlıklarında (t=2,168; p=0.034), karanlık şartlarda hipokotil yaş ağırlıklarında (t=2,879; p=0.005) Ca(NO3)2 uygulamaları ile MgSO4 uygulamalarından daha yüksek ortalama değerler elde edildi. Karanlık şartlarda kök yaş ağırlıkları da Ca(NO3)2 uygulamaları ile daha yüksek olmakla birlikte, bu grupta Ca(NO3)2-MgSO4 uygulamaları arasındaki farklılığın istatistiki değeri yoktu (t=1,086; p=0.281). Karanlık şartlarda 11D-230 fideciklerinde Ca(NO3)2 uygulamaları ile MgSO4 uygulamalarından daha yüksek kotiledon yaş ağırlıklarına ulaşıldı (t=2,665; p=0,011).

The Effects of Different Salinity Stress Conditions on Some Physiological Growth Parameters of Lycopersicon esculentum Mill.

The aim of this study is to examine effects of Ca(NO3)2 and MgSO4 type salinity stress on some physiological growth parameters of Lycopersicon esculentum Mill. concentration values for both salt types were 2000 ppm when effects of salt stress were first observed in germinating rates of L. esculentum Mill. cv. H-2274 under photoperiodic induction conditions. Toxic effects of Ca(NO3)2 and MgSO4 salinities were seen as of 2000 ppm and 5000 ppm respectively under dark conditions. The same concentration values were also effective for L. esculentum Mill. cv. 11D-230 under incubation conditions encouraging etiolation. Ca(NO3)2 salinity acquired reducing properties as of 200 ppm and MgSO4 salinity had the same properties as of 500 ppm under photoperiodic conditions. Upon general evaluation of the effects of increasing Ca(NO3)2 and MgSO4 concentrations in hypocotyl, root and cotyledon fresh weights of seedlings of L. esculentum genotypes in terms of all concentration series for both salts, Ca(NO3)2 applications yielded higher mean values than MgSO4 applications for H-2274 seedlings in hypocotyl (t=3,187; p=0.002), root (t=3,232; p=0.002) and cotyledon fresh weights (t=2,168; p=0.034) under photoperiodic induction and hypocotyl fresh weights (t=2,879; p=0.005) under dark conditions. Although root fresh weights under dark conditions were higher with Ca(NO3)2 applications, there was no statistical significance of the difference between Ca(NO3)2-MgSO4 applications within this group (t=1,086; p=0.281). Higher cotyledon fresh weights were obtained with Ca(NO3)2 applications for 11D-230 seedlings under dark conditions when compared to MgSO4 applications (t=2,665; p=0,011).

___

  • [1]. Munns, R., Husain, S., Rivelli, A.R., James, R.A., Condon, A.G., Lindsay, M.P., Lagudah, E.S., Schachtman, D.P., Hare, R.A., Avenues for Increasing Salt Tolerance of Crops and the Role of Physiologically Based Selection Traits, Plant and Soil, 247, 93-105, (2002).
  • [2]. Munns, R., Genes and Salt Tolerance: Bringing Them Together, New Phytologist, 167, 3, 645-663, (2005).
  • [3]. Wilson, C., Read, J.J., Abo-Kassem, E., Effect of Mixed Salt Salinity on Growth and Ion Relations of a Quinoa and Wheat Variety, Journal of Plant Nutrition, 25, 12, 2689-2704, (2002).
  • [4]. Ramirez, R., Gutierrez, D., Villafane, R., Lizaso, J.I., Salt Tolerance of Sesame Genotypes at Germination, Vegetative and Saturity Stages, Communications in Soil Science and Plant Analysis, 36, 17-18, 2405-2419, (2005).
  • [5]. Sosa, L., Llanes, A., Reinoso, H., Reginato, M., Luna, V., Osmotic and Spesific Ion Effects on the Germination of Prosopis strombulifera, Annals of Botany, 96, 261-267, (2005).
  • [6]. Tobe, K., Li, X., Omasa, K., Effects of Five Different Salts on Seed Germination and Seedling Growth of Haloxylon ammodendron (Chenopodiaceae), Seed Science Research, 14, 345-353, (2004).
  • [7]. Tobe, K., Zhang, L., Omasa, K., Alleviatory Effects of Calcium on the Toxicity of Sodium, Potassium and Magnesium Chlorides to Seed Germination in Three Non Halophytes, Seed Science Research, 13, 47-54, (2003).
  • [8]. Dodd, G.L., Donovan, L.A., Water Potential and Ionic Effects on Germination and Seedling Growth of Two Cold Desert Shrubs, American Journal of Botany, 86, 8, 1146-1153, (1999).
  • [9]. Cuartero, J., Munoz, R.F., Tomato and Salinity, Scientia Horticulturae, 78, 83-125, (1999).
  • [10]. Katembe, W.J., Ungar, I.A., Mitchell, J.P., Effect of Salinity on Germination and Seedling Growth of Two Atriplex Species (Chenopodiaceae), Annals of Botany, 82, 167-175, (1998).
  • [11]. Houle, G., Morel, L., Reynolds, C.E., Siegel, J., The Effect of Salinity on Different Developmental Stages of An Endemic Annual Plant, Aster laurentianus (Asteraceae), American Journal of Botany, 88, 1, 62-67, (2001).
  • [12]. Iqbal, M.Z., Yasmin, N., Shafiq, M., Salt Tolerance Variation in Some Common Trees, Acta Botanica Hungarica, 44, 1-2, 67-74, (2002).
  • [13]. Ellialtıoğlu, Ş., Tıpırdamaz, R., Doku Kültürünün Tuz Stresine Dayanıklılıkta Kullanımı, Bitkilerde Stres Fizyolojisinin Moleküler Temelleri Sempozyumu, İzmir-1998, s: 70-81, (1998).
  • [14]. Babaoğlu, M., Gürel, E., Özcan, S. Bitki Biyoteknolojisi, Doku Kültürü ve Uygulamaları, Selçuk Üniversitesi Yayınları, Konya, (2001).
  • [15]. Başaran, D., Bitki Doku Kültürü, Dicle Üniversitesi Yayınları, Diyarbakır, (1990).
  • [16]. Başaran, D., Modern Genel Botanik, Dicle Üniversitesi Yayınları, Diyarbakır, (1990).
  • [17]. Önder, N., Yentür, S., Bitkilerin Büyüme, Gelişme, Farklılaşma ve Hareket Fizyolojisi, İstanbul Üniversitesi Yayınları, İstanbul, (1999).
  • [18]. Bayuelo-Jimenez, J.S., Craig, R., Lynch, J.P., Salinity Tolerance of Phaseolus Species During Germination and Early Seedling Growth, Crop Science, 42, 1584-1594, (2002).
  • [19]. Mauromicale, G., Licandro, P., Salinity and Temperature Effects on Germination, Emergence and Seedling Growth of Globe Artichoke, Agronomie, 22, 443-450, (2002).
  • [20]. Tobe, K., Li, X., Omasa, K., Seed Germination and Radicle Growth of a Halophyte, Kalidium caspicum (Chenopodiaceae), Annals of Botany, 85, 391-396, (2000).
  • [21]. Ahmad, S., Wahid, A., Rasul, E., Wahid, A., Comparative Morphological and Physiological Responses of Green Gram Genotypes to Salinity Applied at Different Growth Stages, Botanical Bulletin of Academia Sinica, 46, 135-142, (2005).
  • [22]. Gulzar, S., Khan, M.A., Seed Germination of a Halophytic Grass Aeluropus lagopoides, Annals of Botany, 87, 319-324, (2001).
  • [23]. Al-Karaki, G.N., Germination, Sodium and Potassium Concentrations of Barley Seeds as Influenced by Salinity, Journal of Plant Nutrition, 24, 3, 511-522, (2001).
  • [24]. Othman, Y., Karaki, G., Tawaha, A.R., Horani, A., Variation in Germination and Ion Uptake in Barley Genotypes Under Salinity Conditions, World Journal of Agricultural Sciences 2, 1, 11-15, (2006).
  • [25]. Pierce, G.L., Warren, S.L., Mikkelsen, R.L., Linker, H.M., Effects of Soil Calcium and pH on Seed Germination and Subsequent Growth of Large Crabgrass (Digitaria sanguinalis), Weed Technology, 13, 2, 421-424, (1999).
  • [26]. Egan, T.P., Ungar, I.A., Meekins, J.F., The Effect of Different Salts of Sodium and Potassium on the Germination of Atriplex prostrata (Chenopodiaceae), Journal of Plant Nutrition, 20, 12, 1723- 1730, (1997).
  • [27]. Duan, D., Liu, X., Khan, M.A., Gul, B., Effects of Salt and Water Stress on the Germination of Chenopodium glaucum L. Seed, Pakistan Journal of Botany, 36, 4, 793-800, (2004).
  • [28]. Tobe, K., Li, X., Omasa, K., Effects of Sodium, Magnesium and Calcium Salts on Seed Germination and Radicle Survival of a Halophyte, Kalidium caspicum (Chenopodiaceae), Australian Journal of Botany, 50, 163-169, (2002).
  • [29]. Zia, S., Khan, M.A., Effect of Light, Salinity and Temperature on Seed Germination of Limonium stocksii, Canadian Journal of Botany, 82, 151-157, (2004).
  • [30]. Zia, S., Khan, M.A., Comparative Effect of NaCI and Seawater on Seed Germination of Limonium stocksii, Pakistan Journal of Botany, 34, 4, 345-350, (2002).
  • [31]. Chauhan, B.S., Gill, G., Preston, C., African Mustard (Brassica tournefortii) Germination in Southern Australia, Weed Science, 54, 5, 891-897, (2006).
  • [32]. Wilson, C., Liu, X., Lesch, S.M., Suarez, D.L., Growth Response of Major U.S. Cowpea Cultivars. 1. Biomass Accumulation and Salt Tolerance, Hort. Science, 41, 1, 225-230, (2006).
  • [33]. Van Zandt, P.A., Tobler, M.A., Mouton, E., Hasenstein, K.H., Mopper, S., Positive and Negative Consequences of Salinity Stress for the Growth and Reproduction of the Clonal Plant Iris hexagona, Journal of Ecology, 91, 837-846, (2003).
  • [34]. Montgomery, J.A., Wien, H.C., Evaluation of Solid Artificial Media on Lettuce Seedling Germination and Growth, ASGSB Annual Meeting Abstracts, 28, (2004).
  • [35]. Gorham, J., Bridges, J., Effects of Calcium on Growth and Leaf Ion Concentrations of Gossypium hirsutum Grown in Saline Culture, Plant and Soil, 176, 2, 219-227, (1995).
  • [36]. Gulzar, S., Khan, M.A., Ungar, I.A., Liu, X., Influence of Salinity on Growth and Osmotic Relations of Sporobolus ioclados, Pakistan Journal of Botany, 37, 1, 119-129, (2005).
  • [37]. Gulzar, S., Khan, M.A., Ungar, I.A., Effects of Salinity on Growth, Ionic Content, and Plant-Water Status of Aeluropus lagopoides, Communications in Soil Science and Plant Analysis, 34, 11-12, 1657-1668, (2003).
  • [38]. Alam, S., Imamul Hug, S.M., Kawai, S., Islam, A., Effects of Applying Calcium Salts to Coastal Saline Soils on Growth and Mineral Nutrition of Rice Varieties, Journal of Plant Nutrition, 25, 3, 561-576, (2002).
  • [39]. Prado, F.E., Boero, C., Gallardo, M., Gonzales, J.A., Effect of NaCI on Germination, Growth and Soluble Sugar Content in Chenopodium quinoa Willd. Seeds, Botanical Bulletin of Academia Sinica, 41, 27-34, (2000).
  • [40]. Ramoliya, P.J., Patel, H.M., Pandey, A.N., Effect of Salinization of Soil on Growth and Macro and Micro Nutrient Accumulation in Seedlings of Acacia catechu (Mimosaceae), Annals of Applied Biology, 144, 3, 321- 332, (2004).
  • [41]. Ramoliya, P.J., Patel, H.M., Joshi, J.B., Pandey, A.N., Effect of Salinization of Soil on Growth and Nutrient Accumulation in Seedlings of Prosopis cineraria, Journal of Plant Nutrition, 29, 2, 283- 303, (2006).
  • [42]. Bernstein, N., Ioffe, M., Zilberstaine, M., Salt Stress Effects on Avacado Rootstock Growth. 1. Establishing Criteria for Determination of Shoot Growth Sensitivity to the Stress, Plant and Soil, 233, 1-11, (200