Çok Tabakalı Hiperbolik Metamalzeme ile Oluşturulan Geniş Band Optik Soğurucu

Bu çalışmada, özellikle optik bölgede geniş band soğurma gösteren çok tabakalı bir hiperbolik metamalzeme tasarlanmıştır. Tasarlanan yapıda üç farklı metal (Ag, Au ve Al) ve yarıiletken bir malzeme (InGaAs) kullanılmıştır. Hesaplamalarda Transfer Matris Metodundan (TMM) yararlanılmıştır. Bu yöntem kullanılarak tasarlanan çok tabakalı yapıların optik soğurma ve yansıma spektrumları gelme açısına bağlı olarak incelenmiştir. Metal-dielektrik çok tabakalı yapıların hiperbolik dispersiyon gösterdiği bölgeler belirlenmiş, ayrıca gelme açısına bağlı kontur grafikleri elde edilmiştir. Yapılan hesaplamalar sonucunda, metal olarak gümüşün kullanıldığı heteroyapının en iyi soğurma spektrumu verdiği gözlenmiştir.

The Broad Band Optical Absorber Designed By Multilayered Hyperbolic Metamaterial

In this study, a multilayered hyperbolic metamaterial has been designed that exhibits a broad band optical absorption, especially in optical region. In that proposed structure, three different metals (Ag, Au, and Al) and a semiconductor material (InGaAs) have been employed. Optical calculations are performed by using the Transfer Matrix Method. Optical absorption and reflection spectra are determined for different incident angle values. Hyperbolic dispersion regions of the metal-dielectric multilayered structures have been determined, also contour graphs of the structures, depend on the incident angles are obtained. Consequently, the best optical absorption response is found for the structure in which Ag is used as metal component.

___

  • Cai, W. ve Shalaev, V., 2010, Optical Metamaterials: Fundamentals and Applications, Optical Metamaterials: Fundamentals and Applications, 1-200.
  • Deng, H. X., Stan, L., Czaplewski, D. A., Gao, J. ve Yang, X. D., 2017, Broadband infrared absorbers with stacked double chromium ring resonators, Optics Express, 25 (23), 28295-28304.
  • Diem, M., Koschny, T. ve Soukoulis, C. M., 2009, Wide-angle perfect absorber/thermal emitter in the terahertz regime, Physical Review B, 79 (3).
  • Hao, J. M., Wang, J., Liu, X. L., Padilla, W. J., Zhou, L. ve Qiu, M., 2010, High performance optical absorber based on a plasmonic metamaterial, Applied Physics Letters, 96 (25).
  • Krishnamoorthy, H. N. S., Jacob, Z., Narimanov, E., Kretzschmar, I. ve Menon, V. M., 2012, Topological Transitions in Metamaterials, Science, 336 (6078), 205-209.
  • Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. ve Padilla, W. J., 2008, Perfect metamaterial absorber, Physical Review Letters, 100 (20).
  • Lekner, J. ve Dorf, M. C., 1987, Matrix-Methods for the Calculation of Reflection Amplitudes, Journal of the Optical Society of America a-Optics Image Science and Vision, 4 (11), 2092-2095.
  • Li, J. S. ve Pendry, J. B., 2008, Hiding under the Carpet: A New Strategy for Cloaking, Physical Review Letters, 101 (20).
  • Liao, Y. L. ve Zhao, Y., 2017a, An ultra-narrowband absorber with a dielectric-dielectric-metal structure based on guide-mode resonance, Optics Communications, 382, 307-310.
  • Liao, Y. L. ve Zhao, Y., 2017b, Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber, Optics Express, 25 (25), 32080-32089.
  • Liu, N., Mesch, M., Weiss, T., Hentschel, M. ve Giessen, H., 2010a, Infrared Perfect Absorber and Its Application As Plasmonic Sensor, Nano Letters, 10 (7), 2342-2348.
  • Liu, X. L., Starr, T., Starr, A. F. ve Padilla, W. J., 2010b, Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance, Physical Review Letters, 104 (20).
  • Lu, D. L. ve Liu, Z. W., 2012, Hyperlenses and metalenses for far-field super-resolution imaging, Nature Communications, 3.
  • Lu, G., Wu, F., Zheng, M. J., Chen, C. X., Zhou, X. C., Diao, C., Liu, F., Du, G. Q., Xue, C. H., Jiang, H. T. ve Chen, H., 2019, Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials, Optics Express, 27 (4), 5326-5336.
  • Mattiucci, N., Bloemer, M. J., Akozbek, N. ve D'Aguanno, G., 2013, Impedance matched thin metamaterials make metals absorbing, Scientific Reports, 3.
  • Meng, L. J., Zhao, D., Ruan, Z. C., Li, Q., Yang, Y. Q. ve Qiu, M., 2014, Optimized grating as an ultra-narrow band absorber or plasmonic sensor, Optics Letters, 39 (5), 1137-1140.
  • Min, C. J., Li, J., Veronis, G., Lee, J. Y., Fan, S. H. ve Peumans, P., 2010, Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings, Applied Physics Letters, 96 (13).
  • Pendry, J. B., 2000, Negative refraction makes a perfect lens, Physical Review Letters, 85 (18), 3966-3969. Poddubny, A., Iorsh, I., Belov, P. ve Kivshar, Y., 2013, Hyperbolic metamaterials (vol 7, pg 948, 2013), Nature Photonics, 7 (12).
  • Rosenberg, J., Shenoi, R. V., Vandervelde, T. E., Krishna, S. ve Painter, O., 2009, A multispectral and polarization-selective surface-plasmon resonant midinfrared detector, Applied Physics Letters, 95 (16).
  • Saleki, Z., Entezar, S. R. ve Madani, A., 2017, Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer, Applied Optics, 56 (2), 317-323.
  • Sergeant, N. P., Pincon, O., Agrawal, M. ve Peumans, P., 2009, Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks, Optics Express, 17 (25), 22800-22812.
  • Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D. A., Bartal, G. ve Zhang, X., 2008, Three-dimensional optical metamaterial with a negative refractive index, Nature, 455 (7211), 376-U332.
  • Wang, W. Y., Cui, Y. X., He, Y. R., Hao, Y. Y., Lin, Y. Y., Tian, X. M., Ji, T. ve He, S. L., 2014, Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate, Optics Letters, 39 (2), 331-334.
  • Wang, Y., Sun, T. Y., Paudel, T., Zhang, Y., Ren, Z. F. ve Kempa, K., 2012, Metamaterial-Plasmonic Absorber Structure for High Efficiency Amorphous Silicon Solar Cells, Nano Letters, 12 (1), 440-445.
  • Wood, B., Pendry, J. B. ve Tsai, D. P., 2006, Directed subwavelength imaging using a layered metal-dielectric system, Physical Review B, 74 (11).
  • Wu, F., Lu, G., Xue, C. H., Jiang, H. T., Guo, Z. W., Zheng, M. J., Chen, C. X., Du, G. Q. ve Chen, H., 2018, Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths, Applied Physics Letters, 112 (4).
  • Wu, S., Xu, S., Zhang, Y., Wu, Y. N., Jiang, J. J., Wang, Q. J., Zhang, X. J. ve Zhu, Y. Y., 2014, Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure, Optics Letters, 39 (22), 6426-6429.
  • Xue, C. H., Ding, Y. Q., Jiang, H. T., Li, Y. H., Wang, Z. S., Zhang, Y. W. ve Chen, H., 2016, Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials, Physical Review B, 93 (12).
  • Yu, Z. F., Veronis, G., Fan, S. H. ve Brongersma, M. L., 2006, Design of midinfrared photodetectors enhanced by surface plasmons on grating structures, Applied Physics Letters, 89 (15).
  • Zhou, J., Kaplan, A. F., Chen, L. ve Guo, L. J., 2014, Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array, Acs Photonics, 1 (7), 618-624.