İki farklı; fiberle güçlendirilmiş inley köprü sisteminin kırılma

Amaç: Madde kayıplı posterior dişlerin restorasyonunda kullanılan rezin esaslı materyallerin kullanım alanları tek diş eksikliğini gidermek için uygulanan fiberle güçlendirilmiş rezin köprü uygulamalarına kadar genişletilmiştir. Bu çalışmanın amacı Estenia/Ribbond (E/R) ve Tescera/Tescera-Fiber (T/TF) ile yapılan iki yeni metal desteksiz sabit inley parçalı köprü sisteminin in vitro çiğneme simülasyon koşulları altında yeterli kırılma dayanımına sahip olup olmadıklarını karşılaştırmaktır. Gereç ve yöntemler: Periodontal amaçlı çekilmiş çürüksüz insan molar dişleri, aralarında 10 mm boşluk kalacak şekilde polimethilmethakrilat (PMMA) akrilik rezin içerisine gömüldü. Dişlere kutu şekilli preparasyon tekniği kullanarak kaviteler açıldı (n=8). Köprülerin gövdeleri şeffaf plastik kron kalıpları içerisinde hazırlandı. E/R ve T/TF rezin köprüler üretilip daha önce hazırlanan dişler üzerine üretici talimatları doğrultusunda Panavia F ve Duo-Link adeziv simanlar yardımıyla yapıştırıldı. Daha sonra bütün köprüler 37ºC deneysel ortamda ve çiğneme simülatöründe (60.000 X 50N, 1.3 Hz döngüde) yüklemeye maruz bırakıldı. Yaşlandırılan köprülerin kırılma dayanım testleri üniversal instron test cihazında gerçekleştirildi. Çalışmada kullanılan iki adet fiberle güçlendirilen kompozit rezin materyale ait kırılma dayanımı değerleri aralarındaki farklılıkların tespiti için nonparametrik Kruskal-Wallis ve Mann-Whitney U testleri uygulandı (P=0.05). Bulgular: Test grupları arasında en yüksek kırılma dayanımı 733,98 N ile T/TF sabit inley parçalı köprü grubunda gözlendi. Yapılan istatistiksel analiz sonucunda iki metal desteksiz rezin inley köprü arasında, kırılma dayanımları açısından belirgin fark olduğu gözlendi (p

Comparison of fracture strength of two different fiber reinforced inlay dentures; in-vitro

Background: The usage area of resin-based materials, used for restoration of damaged posterior teeth, are extended to replacement of single lost tooth as resin-based fixed partial denture. The aim of this study was to compare whether two new adhesive metal-free resin Inlay Bridge systems (AMFIBS) made with two fiber-reinforced Estenia/Ribbond (E/R) and Tescera/Tescera-fiber (T/TF) have enough fracture strength under in vitro chewing simulation conditions. Methods: Extracted human molar teeth were embedded in a Polymethilmethacrilate (PMMA) acrylic resin 10 mm apart to represent a molar gap. Box-shaped preparation technique was used (n=8). The pontics of bridges were prepared in the strip crown mold. E/R and T/TF were fabricated and inserted according to the manufacturer&#8217;s instructions by adhesive cements. After all bridges were loaded to failure by using the chewing simulation device (60.000 X 50N, 1.3 Hz) in an artificial environment at 37ºC. The fracture strength test was carried by using a Universal Instron Testing machine. The fracture strength data of two fiber reinforced composite materials were statistically analyzed by using Kruskal- Wallis and Mann-Whitney U tests. (P=0.05). Results: The highest fracture strength data was obtained from T/ TF test group as 733,98 N. In the results of statistical analysis, the significant difference was found in fracture strength between two AMFIBSs (p<0.05). Conclusion: This study demonstrated that E/R and T/TF fiber reinforced composite materials have potential for production of AMFIBS, because of the successful fracture strengths. However, T/ TF shows higher fracture strength than E/R under in vitro chewing simulation conditions.

___

  • 1. Ferracane JL. Resin composite-State of the art Review. Dent mater 2011;27: 29-38.
  • 2. Behr M, Rosentritt M, Leibrock A, Schneider-Feyrer S, Handel G. In-vitro study of fracture strength and marginal adaptation of fibre-reinforced adhesive fixed partial inlay dentures. J Dent 1999; 27(2): 163-8.
  • 3. Göhring TN, Peters OA, Lutz F. Marginal adaptation of bonded slot-inlays anchoring four-unit fixed partial dentures. J Prosthet Dent 2001; 86(1): 81-92.
  • 4. Burke EJ, Qualtrough AJ. Aesthetic inlays: Composite or ceramic? Br Dent J 1994; 17(6): 53-60.
  • 5. Gül P, Özakar İlday N, Akgül N. Fiber Reinforced Composite Fixed Partial Dentures Applications in Missing Single Tooth: Case Report. Turkiye Klinikleri J Dental Sci 2010;16(3):286-96.
  • 6. Özakar İlday N, Zorba YO. Fiberle Güçlendirilmiş Kompozit Inlay Köprü Uygulamaları. Türkiye Klinikleri J Dental Sci 2009;15(1):53-8.
  • 7. Eliasson A, Arnelund CF, Johansson A. A clinical evaluation of cobalt chromium metal-ceramic fixed partial dentures and crowns: A three- to seven-year retrospective study. J Prosthet Dent 2007;98(1): 6-16.
  • 8. Walton TR. An up to 15-year longitudinal study of 515 metal-ceramic FPDs: Part 1.Outcome. Int J Prosthodont 2002; 15: 439-45.
  • 9. Rammelsberg P, Behr M, Pospiech P, Gernet W, Handel G. Adhesively fixed partial dentures: Esthetic and substance preserving alternatives for conventional fixed partial dentures. Dtsch Zahnärztl Z 1995;50(3): 224-7.
  • 10. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications in fixed prosthodontics. J Prosthet Dent 2003; 90(1): 31-41.
  • 11. O’Boyle KH, Norling BK, Cagna DR, Phoenix RD. An investigation of new metal framework design for metal ceramic restorations. J Prosthet Dent 1997; 78(3): 295-301.
  • 12. Edelhoff D, Spiekermann H, Yildirim M. Metal-free inlayretained fixed partial dentures. Quintessence Int 2001; 32(4): 269-81.
  • 13. Behr M, Rosentritt M, Latzel D, Kreisler T. Comparison of three types of fiber-reinforced composite molar crowns on their fracture resistance and marginal adaptation. J Dent 2001; 29(3):187-196.
  • 14. Loose M, Rosentritt M, Leibrock A, Behr M, Handel G. In vitro study of fracture strength and marginal adaptation of fibre-reinforced-composite versus all ceramic fixed partial dentures. Eur J Prosthodont Restor Dent 1998; 6(2): 55- 62.
  • 15. Gohring TN, Schmidlin PR, Lutz F. Two-year clinical and SEM evaluation of glass-fi ber-reinforced inlay fixed partial dentures. Am J Dent 2002; 15(1): 35-40. 41
  • 16. Magne P, Belser UC. Porcelain versus composite inlays/ onlays: effects of mechanical loads on stress distribution, adhesion, and crown flexure. Int J Periodontics Restorative Dent 2003; 23(6): 543-55.
  • 17. Freilich MA, Niekrash CE, Katz RV, Simonsen RJ. The effects of resin-bonded and conventional fixed partial dentures on the periodontium: restoration type evaluated. J Am Dent Assoc 1990;121(2): 265-9.
  • 18. Cobankara FK, Unlu N, Cetin AR, Ozkan HB. The Effect of Different Restoration Techniques on the Fracture Resistance of Endodontically-treated Molars. Oper Dent 2008; 33(5): 526-33.
  • 19. Krejci I, Reich T, Lutz F. In vitro test results of the evaluation of dental restoration systems correlation with in vivo results. Schweiz Monatsschr Zahnmed 1990; 100: 1445- 9.
  • 20. Burke FJ, Shortall AC, Combe EC, Aitchison TC. Assessing restorative dental materials: I. Test methods and assessment of results. Dent Update 2002; 29(4): 188-94.
  • 21. Koutayas SO, Kern M, Ferraresso F, Strub JR. Influence of design and mode of loading on the fracture strength of all-ceramic resin-bonded fixed partial dentures: an in vitro study in a dual-axis chewing simulator. J Prosthet Dent 2000; 83(5):540-7.
  • 22. Rosentritt M, Plein T, Kolbeck C, Behr M, Handel G. In vitro fracture force and marginal adaptation of ceramic crowns fixed on natural and artificial teeth. Int J Prosthodont 2000; 13(5): 387-91.
  • 23. Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 2000; 79(1):21-7.
  • 24. Att W, Stamouli K, Gerds T, Strub J R. Fracture resistance of different zirconium dioxide three-unit all-ceramic fixed partial dentures. Acta Odontologica Scandinavica 2007; 65(1): 14-21.
  • 25. Pini M, Wiskott HW, Scherrer SS, Botsis J, Belser UC. Mechanical characterization of bovine periodontal ligament. J Periodontal Res 2002; 37(4):237-44.
  • 26. Soares CJ, Pizi EC, Fonseca RB, Martins LR. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Braz Oral Res 2005; 19(1):11-6.
  • 27. Sarıdağ S, Özyesil AG. Metal seramik ve tam seramik inley destekli sabit parsiyel protezlerin kırılma dayanımlarının incelenmesi. SÜ Dişhek Fak Derg 2009;18: 136-142.
  • 28. Van Heumen CC, Tanner J, Van Dijken JW, Pikaar R, Lassila LV, Creugers NH, Vallittu PK, Kreulen CM. Fiveyear survival of 3-unit fiber-reinforced composite fixed partial dentures in the posterior area. Dent Mater 2010; 26(10):954-60.
  • 29. Song HY, Yi YJ, Cho LR, Park DY. Effects of two preparation designs and pontic distance on bending and fracture strength of fiber-reinforced composite inlay fixed partial dentures. J Prosthet Dent 2003; 90(4): 347-53.
  • 30. Ellakwa AE, Shortall AC, Shehata MK, Marquis PM. The influence of fibre placement and position on the efficiency of reinforcement of fibre reinforced composite bridgework. J Oral Rehabil 2001; 28(8):785-91.
  • 31. Gibbs CH, Mahan PE, Lundeen HC, Brehnan K, Walsh EK, Holbrook WB. Occlusal forces during chewing and swallowing as measured by sound transmission. J Prosthet Dent 1981;46(4):443-9.
  • 32. Hidaka O, Iwasaki M, Saito M, Morimoto T. Influence of clenching intensity on bite force balance, occlusal contact area and average bite pressure. J Dent Res 1999;78(7):1336-44.
  • 33. Ohara Y, Suızu M, Okada K, Yamauchı J. Characteristics of a New Composite Bridge System Reinforced with Fiber. Abstract of 81st General Session of the IADR: number 2012. Göteborg, Sweden; 2003. p.113.
  • 34. Rosentritt M, Behr M, Handel G. Fixed partial dentures: all-ceramics, fibre-reinforced composites and experimental systems. J Oral Rehabil 2003;30(9): 873-7.
  • 35. Vanini L. Light and color in anterior composite restorations. Pract Periodontics Aesthet Dent 1996;8(7): 673-82.