Farklı CAD/CAM inlay restorasyonların yapay yaşlandırma sonrası kırılma dayanımlarının incelenmesi

Amaç: Bu çalışmanın amacı, farklı materyaller kullanılarak bilgisayar destekli tasarım/bilgisayar destekli üretim (CAD/CAM) ile üretilen inley restorasyonların hızlandırılmış yapay yaşlandırma sonrasında kırılma direncini karşılaştırmaktır. Gereç ve Yöntemler: Kırk adet mandibular molar dişe sınıf I inlay preparasyonu yapıldı. Dişler, kullanılan malzeme tipine göre dört gruba (n = 10) ayrıldı: feldspatik-seramik (CEREC Blocks); lösit bazlı cam seramik (IPS Empress CAD); rezin nano-seramik (Lava Ultimate); ve kontrol (sağlam dişler). Dijital ölçüler elde edildikten sonra restorasyonlar CAD/CAM ile tasarlandı ve üretildi. İnlay restorasyonlar, dual polimerize bir rezin siman (Rely X Ultimate) kullanılarak inlay boşluklarına simante edildi ve bir hafta boyunca 37°C'de distile su içinde saklandı. Tüm örnekler daha sonra 300 saat boyunca hızlandırılmış ultraviyole yaşlandırmasına maruz bırakıldı. Son olarak, kırılıncaya kadar örneklere bir sıkıştırma yükü uygulandı. İstatistiksel analiz Tek Yönlü ANOVA ve Tukey HSD testi (α= 0,05) kullanılarak yapıldı. Bulgular: Grupların ortalama kırılma dayanımları sırasıyla şu şekildedir: Kontrol (1555,3±412,2 N) > Lava Ultimate (1525±394 N) > IPS Empress CAD (1364,3±545,6 N) > CEREC (1231,9±412,2 N). Ancak grupların ortalama kırılma dayanımları arasında istatistiksel bir fark bulunamadı (P>0,05). CEREC ve IPS Empress CAD gruplarının %50’si ve Lava Ultimate grubunun %60’ı tamir edilebilir kırık tipi sergiledi. Sonuç: Kullanılan materyal tipi, inley ile restore edilmiş molar dişlerin kırılma direncini etkilememiştir ve inley restorasyonlar restore edilen dişlerin gücünü zayıflatmamıştır. Bu nedenle, test edilen tüm materyaller posterior bölgede kullanılabili

Evaluation of the fracture strength of different CAD/CAM inlay restorations after accelerated aging

Background: The purpose of this study was to compare thefracture resistance of inlay restorations manufactured by computeraided design/computer aided manufacturing (CAD/CAM) usingdifferent materials after accelerated artificial aging. Materials and Methods: Class I inlay preparations were made for40 mandibular molar teeth. The teeth were allocated into fourgroups (n=10) according to the type of manufacturing materialused: feldspathic-ceramic (CEREC blocks); leucite-based glassceramic (IPS Empress CAD); resin nano-ceramic (Lava Ultimate);and a control (intact teeth). After obtaining digital impressions,restorations were designed and milled with CAD/CAM. Inlayrestorations were cemented to the inlay cavities using a dualpolymerizing resin cement (Rely X Ultimate) and stored in distilledwater at 37°C for a week. All the samples were then exposed toaccelerated ultraviolet aging for 300 hours. Finally, a compressiveload was applied to the samples until fracture. Statistical analysiswas conducted using One-Way ANOVA and the Tukey HSD test(α=0.05).Results: The mean fracture strength values of the groups were;Control (1555.3±412.2 N)> Lava Ultimate (1525±394N)>IPSEmpress CAD (1364.3±545.6N) > CEREC(1231.9±412.2N),respectively. However, there was no statistically significantdifference in mean fracture strength among different inlayrestoration groups (P>0.05). Fifty percent of the both CEREC andIPS Empress CAD groups and 60% of the Lava Ultimate groupshowed reparable fractures.Conclusion: The type of material used did not influence thefracture strength of inlay-restored molar teeth and inlay restorationsdid not weaken the strength of the restored teeth. Therefore, all ofthe tested materials are suitable for use in the posterior reg

___

  • 1. St-Georges AJ, Sturdevant JR, Swift EJ, Thompson JY. Fracture resistance of prepared teeth restored with bonded inlay restorations. J Prosthet Dent 2003; 89(6): 551 -7.
  • 2. Fron Chabouis H, Smail Faugeron V, Attal JP. Clinical efficacy of composite versus ceramic inlays and onlays: a systematic review. Dent Mater 2013; 29(12): 1209-18.
  • 3. Seow LL, Toh CG, Wilson NH. Strain measurements and fracture resistance of endodontically treated premolars restored with all-ceramic restorations. J Dent 2015; 43(1): 126-32.
  • 4. Batalha-Silva S, de Andrada MA, Maia HP, Magne P. Fatigue resistance and crack propensity of large MOD composite resin restorations: direct versus CAD/CAM inlays. Dent Mater 2013; 29(3): 324-31.
  • 5. Liu X, Fok A, Li H. Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration. Dent Mater 2014; 30(3): 327-33.
  • 6. Frankenberger R, Hartmann V, Krech M, Krämer N, Reich S, Braun A. Adhesive luting of new CAD/CAM materials. Int J Comput Dent 2015; 18: 9-20.
  • 7. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 2008; 204(9): 505- 11.
  • 8. Zhi L, Bortolotto T, Krejci I. Comparative in vitro wear resistance of CAD/CAM composite resin and ceramic materials. J Prosthet Dent 2016; 115(2): 199-202.
  • 9. Quinn GD, Giuseppetti AA, Hoffman KH. Chipping fracture resistance of dental CAD/CAM restorative materials: part I--procedures and results. Dent Mater 2014; 30(5): 99-111.
  • 10.Vasquez VZ, Ozcan M, Kimpara ET. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading. Dent Mater 2009; 25(2): 221 -31.
  • 11.Zhang Y, Lawn B. Long-term strength of ceramics for biomedical applications. J Biomed Mater Res B Appl Biomater 2004; 69(2): 166-72.
  • 12.Belli R, Geinzer E, Muschweck A, Petschelt A, Lohbauer U. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations. Dent Mater 2014; 30(4): 424-32.
  • 13.Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent 2015; 114(4): 587-93.
  • 14.Koller M, Arnetzl GV, Holly L, Arnetzl G. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study. Int J Comput Dent 2012; 15(2): 159-64.
  • 15. Harada A, Nakamura K, Kanno T, Inagaki R, Ortengren U, Niwano Y, Sasaki K, Egusa H. Fracture resistance of computer-aided design/computer-aided manufacturinggenerated composite resin-based molar crowns. Eur J Oral Sci 2015; 123(2): 122-9.
  • 16. Ab-Ghani Z, Jaafar W, Foo SF, Ariffin Z, Mohamad D. Shear bond strength of computeraided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement. J Conserv Dent 2015; 18(5): 355-9.
  • 17. Fasbinder DJ, Neiva GF. Surface Evaluation of Polishing Techniques for New Resilient CAD/CAM Restorative Materials. J Esthet Restor Dent 2016; 28: 56-66.
  • 18. Turgut S, Bagis B. Colour stability of laminate veneers: an in vitro study. J Dent 2011; 39(3): 57-64.
  • 19. Heydecke G, Zhang F, Razzoog ME. In vitro color stability of double-layer veneers after accelerated aging. J Prosthet Dent 2001; 85(6): 551 -7.
  • 20. Beltrão M, Spohr AM, Oshima H, Mota EG, Burnett JL. Fracture strength of endodontically treated molars transfixed horizontally by a fiber glass post. Am J Dent 2009; 22(1): 9-13.
  • 21. Andrade J, Stona D, Bittencourt H, Borges G, Burnett L, Spohr A. Effect of different computeraided design/computer-aided manufacturing (CAD/CAM) materials and thicknesses on the fracture resistance of occlusal veneers. Oper Dent In-Press, doi.org/10.2341/17-131 -L.
  • 22. Steele A, Johnson BR. In vitro fracture strength of endodontically treated premolars. J Endod 1999; 25(1): 6-8.
  • 23. Mjor I, Gordan V. Failure, repair, refurbishing and longevity of restorations. Oper Dent 2002; 27(5): 528-34.
  • 24. Gomes PN, Dias S, Moyses M, Pereira L, Negrillo B, Ribeiro J. Effect of artificial accelerated aging on Vickers microhardness of composite resins. Gen Dent 2008; 56(7): 695-9.
  • 25. Goiato MC, Santos DMd, Haddad MF, Pesqueira AA. Effect of accelerated aging on the microhardness and color stability of flexible resins for dentures. Braz Oral Res 2010; 24(1): 114-9.
  • 26. Bottino MA, Campos F, Ramos NC, Rippe MP, Valandro LF, Melo RM. Inlays made from a hybrid material: adaptation and bond strengths. Oper Dent 2015; 40(3): 83-91.
  • 27. Habekost LdV, Camacho GB, Azevedo EC, Demarco FF. Fracture resistance of thermal cycled and endodontically treated premolars with adhesive restorations. J Prosthet Dent 2007; 98(3): 186-92.
  • 28. Wafaie RA, Ibrahim Ali A, Mahmoud SH. Fracture resistance of prepared premolars restored with bonded new lab composite and all-ceramic inlay/onlay restorations: Laboratory study. J Esthet Restor Dent 2018; 30: 229–39.
  • 29. Xu H, Smith D, Jahanmir S, Romberg E, Kelly J, Thompson V, Rekow E. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 1998; 77(3): 472-80.
  • 30. 3M ESPE. Lava Ultimate CAD/CAM Restorative Technical Product Profile. USA, 2011.
  • 31. Pol CW, Kalk W. A systematic review of ceramic inlays in posterior teeth: an update. Int J Prosthodont 2011; 24(6): 566-75.
  • 32. Hayashi M, Wilson N, Yeung C, Worthington H. Systematic review of ceramic inlays. Clin Oral Investig 2003; 7(1): 8-19.
  • 33. Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater 2014; 30(9): 954-62.
  • 34. Cesar PF, Júnior WGM, Braga RR. Influence of shade and storage time on the flexural strength, flexural modulus, and hardness of composites used for indirect restorations. J Prosthet Dent 2001; 86(3): 289-96.
  • 35. Nejatidanesh F, Amjadi M, Akouchekian M, Savabi O. Clinical performance of CEREC AC Bluecam conservative ceramic restorations after five years-a retrospective study. J Dent 2015; 43(9): 1076-82.
  • 36. Guess PC, Schultheis S, Wolkewitz M, Zhang Y, Strub JR. Influence of preparation design and ceramic thicknesses on fracture resistance and failure modes of premolar partial coverage restorations. J Prosthet Dent 2013; 110(4): 264- 73.
  • 37. Yoon HI, Sohn PJ, Jin S, Elani H, Lee SJ. Fracture Resistance of CAD/CAM-Fabricated Lithium Disilicate MOD Inlays and Onlays with Various Cavity Preparation Designs. J Prosthodont 2018; 0: 1 -6.
  • 38. Soares CJ, Martins LR, Fonseca RB, CorrerSobrinho L, Fernandes Neto AJ. Influence of cavity preparation design on fracture resistance of posterior Leucite-reinforced ceramic restorations. J Prosthet Dent 2006; 95(6): 421 -9.
  • 39. Dietschi D, Maeder M, Meyer J-M, Holz J. In vitro resistance to fracture of porcelain inlays bonded to tooth. Quintessence Int 1990; 21(10): 823-31.
  • 40. Jung Y-G, Peterson I, Kim D, Lawn BR. Lifetimelimiting strength degradation from contact fatigue in dental ceramics. J Dent Res 2000; 79(2): 722- 31.