Performance evaluation of spectral wave model caused by ERA-Interim, ERA5, and CFSR wind fields in the Black Sea

Performance evaluation of spectral wave model caused by ERA-Interim, ERA5, and CFSR wind fields in the Black Sea

The main objective of the present study is to evaluate the performance of the MIKE 21 SW (Spectral Wave) in a semi-closed basin (Black Sea). Wind data were obtained from ECMWF ERA-Interim, ECMWF ERA5, and NCEP CFSR. The wave model was calibrated and validated with wave measurements recorded at seven different stations along the Black Sea coastlines. In the calibration, several different physical parameters were tested to determine the optimal model settings, and the whitecapping parameter (Cds) was more influential than the bottom friction parameter (kn), wave breaking parameter (γ), and nonlinear wave-wave interactions in the prediction of the Black Sea wave properties. The wave results modeled using ERA-Interim showed less agreement with wave measurements than those obtained with ERA-5 and CFSR wind fields. Although the significant wave height and wave period modeled using ERA5 and CFSR wind fields were reasonably well matched at all measurement stations, ERA5 wind fields provided slightly better performance owing to having the largest correlation coefficient (R) and lowest statistical error measures (bias, RMSE, SI) in the Black Sea.

___

  • Akpinar, A., Ponce de Le´on, S., (2016). An assessment of the wind re-analyses in the modelling of an extreme sea state in the Black Sea. Dynamics of Atmospheres and Oceans, 73, 61–75.
  • Ari Guner, H. A., Yuksel, Y., and Ozkan Cevik, E. (2013). Estimation of wave parameters based on nearshore wind–wave correlations. Ocean Engineering, 63, 5262.
  • Battjes, J.A., Janssen, J.P.F.M. (1978). Energy loss and set-up due to breaking of random waves Proceedings of the 16th Conference on Coastal Engineering, ASCE, Hamburg, Germany, 569–587.
  • Cavaleri, L., Bertotti, L. (2005). The improvement of modeled wind and wave fields with increasing resolution. Ocean Engineering, 33, 553–565.
  • Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J.R., Breivik, O., et al. (2018). Wave modelling in coastal and inner seas. Progress in Oceanography, 167, 164263.
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Holm, E.V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.N., Vitart, F. (2011). The ERA-interim reanalysis configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.
  • DHI (2007). MIKE 21 - Spectral wave module - Scientific Document, 42. https://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/M21SW_Scientific_Doc.pdf
  • Divinsky, B.V., Kosyan, R.D. (2015). Observed wave climate trends in the offshore Black Sea from 1990 to 2014. Oceanology, 55, 837–843.
  • Divinsky, B.V., Kosyan, R.D. (2017). Spatiotemporal variability of the Black Sea wave climate in the last 37 years. Continental Shelf Research, 136, 1–19.
  • DLH, (1999). Port hydraulics laboratory filyos harbour wave measurements.
  • Hasselmann, S., Hasselmann, K., Allender, J. H., Barnett, T. P., (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15, 1378–1391.
  • Hersbach, H., Dee, D. (2016). ERA5 reanalysis is in production, ECMWF Newsletter, 147, 7.
  • Holthuijsen, L., Booij, N., & Herbers, T. (1989). A prediction model for stationary, short-crested waves in shallow water with ambient currents. Coastal Engineering, 13, 23–54.
  • Islek, F., Yuksel, Y., Sahin, C. (2020a). Spatiotemporal long-term trends of extreme wind characteristics over the Black Sea. Dynamics of Atmospheres and Oceans, 90, Article 101132.
  • Islek, F., Yusek Y., and Sahin C., (2020b). Assessments of long-term wind and wave trends in the Black Sea. Proceedings of virtual Conference on Coastal Engineering.
  • Islek, F., Yuksel, Y., Sahin, C., Ari Guner, H.A. (2021). Long-term analysis of extreme wave characteristics based on the SWAN hindcasts over the Black Sea. Dynamics of Atmospheres and Oceans, 94, Article 101165.
  • Islek, F., and Yuksel, Y. (2021). Inter-comparison of long-term wave power potential in the Black Sea based on the SWAN wave model forced with two different wind fields. Dynamics of Atmospheres and Oceans, 93, Article 101192.
  • Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen P.A.E.M. (1994). Dynamics and modelling of ocean waves, Cambridge University Press.
  • Myslenkov, S.A., Shestakova, A.A., Toropov, P.A., (2016). Numerical simulation of storm waves near the northeastern coast of the Black Sea. Russian Meteorology and Hydrology, 41, 706–713.
  • Myslenkov, S.A., Zelenko, A., Resnyanskii, Y., Arkhipkin, V., and Silvestrova K. (2021). Quality of the wind wave forecast in the Black Sea including storm wave analysis. Sustainability, 13(23), Article 13099.
  • Onea, F., Raileanu, A., Rusu, E. (2015). Evaluation of the Wind Energy Potential in the Coastal Environment of two Enclosed Seas. Advances in Meteorology, 2015, Article 808617.
  • Ozhan, E., and Abdalla, S. (2002). Wind and Deep Water Wave Atlas of Turkish Coasts, Turkish National Coastal Zone Management Committee/MEDCOAST. Middle East Technical University, Ankara, pp. 445.
  • Rusu, L., Bernardino, M., Soares, C.G. (2014). Wind and wave modelling in the Black Sea. Journal of Operational Oceanography, 7(1), 5–20.
  • Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadigai, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M.H., Sela, J., Iredell, M., Treadon, R., Kleist, D., van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei, H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang, W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K., Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R.W., Rutledge, G., & Goldberg, G. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1057.
  • Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., & Becker, E. (2014). The NCEP climate forecast system version 2. Journal of Climate, 27, 2185–2208.
  • Soomere, T., & Räämet, A. (2011). Long-term spatial variations in the Baltic Sea wave fields. Ocean Science, 7(1), 141–150.
  • Weisse, R., & von Storch, H. (2010). Marine Climate and Climate Change Storms, Wind Waves and Storm Surges. Springer, 200.
  • Valchev, N., Davidan, I., Belberov, Z., Palazov, A., & Valcheva, N. (2010). Hindcasting and assessment of the western black sea wind and wave climate. Journal of Environmental Protection and Ecology, 11, 1001–1012.
  • Valchev, N.N., Andreeva, N.K., & Valcheva, N.N. (2013). Assessment of off-shore wave energy in the Black Sea on the basis of long-term wave hindcast. Developments in Maritime Transportation and Exploitation of Sea Resources, 1021–1028.
  • Vledder, V., & Akpinar, A. (2015). Wave model predictions in the Black Sea: sensitivity to wind fields. Applied Ocean Research, 53, 161–178.
  • Yuksel, Y., Yuksel, Z.T., & Sahin C. (2020). Effect of long-term wave climate variability on performance-based design of coastal structures. Aquatic Ecosystem Health & Management, 23(4), 407416.
  • Yuksel, Y., Yuksel, Z.T., Islek, F., Sahin C., & Ari Guner, H.A. (2021). Spatiotemporal long-term trends of wind and wave climate and extreme characteristics over the Sea of Marmara. Ocean Engineering, 228, Article 108946.