Tibia Intramedüller Çivileme Sisteminde Proksimal Kilitleme Vidalarının Dirençlerinin Karşılaştırılması: Biyomekanik Çalışma

Amaç: Parçalı tibia kırıklarınnın tedavisinde kullanılan intramedüller çivinin kilitleme vidalarında deformasyon sıklıkla görülmektedir. Bu çalışmanın amacı tibia intramedüller çivileme sisteminde beş farklı proksimal kilitleme vidasının bükülme dirençlerini karşılaştırmaktır.Metod: 50 adet vida üç farklı çapta(4.5 mm, 5 mm ,5.5 mm) ve 2 farklı yiv şeklinde( yivli ve yivsiz)olacak şekilde beş farklı gruba ayrıldı. 34 mm iç çapa sahip bir paslanmaz çelik tüp tibiayı temsil etmek üzere hazırlandı. Tüm vidalara uygulama sonrası üç nokta bükülme testi yapıldı. Sonuçlar: Yivsiz 4.5 mm ve yivli 5mm vida gruplarının ortalama değerleri yivsiz 5 mm, yivli 5.5 mm ve yivsiz 5.5 mm gruplarına gore anlamlı derecede düşük bulundu(p=0.000) Çıkarımlar: Proksimal kilitleme vidasının deformasyonundan kaçınmak için yivsiz 4.5 mm ve yivli 5 mm vidaların kullanılması uygun olmayabilir. Yivsiz 5 mm, yivli 5.5 mm ve yivsiz 5.5 mm vidaların güvenli bir şekilde kullanılması önerilebilir.

Comparison of the Resistance of Proximal Locking Screws in Tibia Nailing System – A Biomechanical Study

Purpose:  Locking screw deformation is common in nailing of comminuted tibia fractures.  The aim is to compare five different proximal locking screws bending resistance in tibia nailing system.Methods: 50 screws were divided into five groups. A stainless steel tube which has a 34 mm internal diameter was prepared representing the proximal tibia. A 3-point bending tests were performed on locking  screws for determining their yield points with 3 different dimensions (4.5 mm, 5 mm and 5,5 mm) and with 2 different screw  thread (low threaded and unthreaded).Results: The mean yield point values of smooth 4.5 mm and threaded 5 mm low locking screws were statistically significant less than that of smooth 5 mm, low threaded 5.5 mm and smooth 5.5 mm,(P=0.000). Conclusions:  To avoid proximal locking screw deformation, use of smooth 4,5 mm and low threaded 5 mm locking screws should be avoided in nailing of comminuted   tibia fractures of unreliable persons.  Smooth 5 mm, low threaded 5.5 mm and smooth screws 5.5 mm may be used safely.

___

  • 1. Whittle, A.P., et al., Treatment of open fractures of the tibia shaft with the use of interlocking nailing without reaming. J Bone Joint Surg Am, 1992. 74(8): p. 1162-71.
  • 2. Whittle, A.P., W. Wester, and T.A. Russell, Fatigue failure in small diameter tibial nails. Clin Orthop Relat Res, 1995(315): p. 119-28.
  • 3. Boenisch, U.W., P.G. de Boer, and S.F. Journeaux, Unreamed intramedullary tibial nailing--fatigue of locking bolts. Injury, 1996. 27(4): p. 265-70.
  • 4. Court-Brown, C.M., et al., Reamed or unreamed nailing for closed tibial fractures. A prospective study in Tscherne C1 fractures. J Bone Joint Surg Br, 1996. 78(4): p. 580-3.
  • 5. Yilmaz E, Karakurt L, Bulut M, Belhan O, Serin E. [Treatment of femoral shaft fractures and pseudoarthrosis with compressive and interlocking intramedullary nailing]. Acta orthopaedica et traumatologica turcica. 2005; 39(1):7-15.
  • 6. Hapa O, HH Muratli, HY Yuksel, et al. Single or double distal locking in intramedullary nailing of tibial shaft fractures: a prospective randomized study. Ulus Travma Acil Cerrahi Derg. 2010; 16:33-7.
  • 7. Hou, S.M., J.L. Wang, and J. Lin, Mechanical strength, fatigue life, and failure analysis of two prototypes and five conventional tibial locking screws. J Orthop Trauma, 2002. 16(10): p. 701-8.
  • 8. Lin, J. and S.M. Hou, Bending strength and holding power of a prototype tibial locking screw. Clin Orthop Relat Res, 2002(403): p. 232-9.
  • 9. Chao, C.K., et al., Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses. Clin Biomech (Bristol, Avon), 2007. 22(1): p. 59-66.
  • 10. Karaarslan AA, Karakaşli A, Karci T, Aycan H, Yildirim S, Sesli E. A new compression design that increases proximal locking screw bending resistance in femur compression nails. Acta Orthop Belg. 2015 Jun;81(2):245-50.
  • 11. Karaarslan AA, Karakaşlı A, Karcı T, Aycan H, Sesli E. Reliability of threaded locking screws.
  • Acta Orthop Traumatol Turc. 2015;49(5):552-7.
  • 12. Karaarslan AA, Karakaşli A, Aycan H, Çeçen B, Yildiz DV, Sesli E. The best location for proximal locking screw for femur interlocking nailing: A biomechanical study. Indian J Orthop. 2016 Jan-Feb;50(1):94-8.
  • 13. Aper, R.L., et al., Effect of bone diameter and eccentric loading on fatigue life of cortical screws used with interlocking nails. Am J Vet Res, 2003. 64(5): p. 569-73.
  • 14. Gaebler, C., et al., Fatigue strength of locking screws and prototypes used in small-diameter tibial nails: a biomechanical study. J Trauma, 1999. 47(2): p. 379-84.
  • 15. Griffin, L.V., R.M. Harris, and J.J. Zubak, Fatigue strength of common tibial intramedullary nail distal locking screws. J Orthop Surg Res, 2009. 4: p. 11.
  • 16. Kinast C, Frigg R, Perren SM. Biomechanics of the interlocking nail. A study of the proximal interlock. Archives of orthopaedic and trauma surgery. 1990; 109(4):197-204.
  • 17. Karuppiah SV, Johnstone AJ. How cross screw length influences the stiffnes of intramedullary nail system. JBiomedical Science and Engineering. 2010; 3:35-8.
  • 18. Hsu CC, Yongyut A, Chao CK, Lin J. Notch sensitivity of titanium causing contradictory effects on locked nails and screws. Medical engineering & physics. 2010;32(5):454-60.
  • 19. Zindrick, M.R., et al., A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res, 1986(203): p. 99-112.
  • 20. Fairbank, A.C., et al., Stability of reamed and unreamed intramedullary tibial nails: a biomechanical study. Injury, 1995. 26(7): p. 483-5.
  • 21. Wehner, T., L. Claes, and U. Simon, Internal loads in the human tibia during gait. Clin Biomech (Bristol, Avon), 2009. 24(3): p. 299-302.