PLURİPOTENT KÖK HÜCRELERDEN SİNİR HÜCRELERİNE FARKLILAŞTIRMA YÖNTEMLERİ

İnsan embriyonik kök hücreleri, embriyoların erken blastokist evresindeki iç hücre kütlesinden türetilen hücrelerdir. Pluripotent özellikte olan bu hücreler, uygun koşullar altında fonksiyonel nöronlara ve farklı tipte sinir hücrelerine farklılaştırılabilmektedir. Ancak bu alandaki en büyük zorluklardan biri, yenilenebilir, kültürü kolay, nöral soylara bağlı nöral prekürsör hücre popülasyonu oluşturmaktır. Bu nedenle, insan embriyonik kök hücrelerini prekürsör hücrelere en uygun şekilde farklılaştırmak, bunların kendi kendini yenileyen bir popülasyon olarak devam etmesi ve farklı bölgelerdeki sinir hücre tiplerini saf bir popülasyon şeklinde üretmek için kritik öneme sahiptir. Hücre sinyalleri ve bunlarla ilişkili moleküller de bu olaylarda önemli bir rol oynamaktadır. Nöral prekürsör hücrelerinin üretilmesi için kök hücre biyolojisinin ve nöral hücrelere farklılaşmada rol oynayan önemli yolakların daha iyi anlaşılması gerekmektedir. Bu derlemede kök hücrelerden nöral hücrelere farklılaştırma yöntemlerine ve bu süreçte önemli olan sinyal yolaklarına ve moleküllere odaklanılmaktadır.

METHODS OF DIFFERENTIATION FROM PLURIPOTENT STEM CELLS TO NEURAL CELLS

Human embryonic stem cells are derived from inner cell mass of early stage blastocyst embryos. These cells are pluripotent and can differentiate into functional neurons and various nerve cells under appropriate conditions. However, one of the biggest challenges in this area is to establish a renewable, easy-to-culture, neural lineage-linked neural precursor cell population. Therefore, it is crucial to conveniently differentiate human embryonic stem cells into precursor cells, maintain them as a self-renewing population, and achieve nerve cell types from different regions as a pure population. Cell signals and their associated molecules also play an important role in these events. For the generation of neural precursor cells, a better understanding of stem cell biology and the important pathways involved in differentiation into neural cells is required. This review focuses on the differentiation methods from stem cells to neural cells and the important signaling pathways and molecules in this process.

___

  • 1. Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep. 2020;16(1):3-32.
  • 2. Zhang S, Bell E, Zhi H, Brown S, Imran SAM, Azuara V, Cui W. OCT4 and PAX6 determine the dual function of SOX2 in human ESCs as a key pluripotent or neural factor. Stem Cell Res Ther. 2019;10(1):122.
  • 3. Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 2008;22(2):152-65.
  • 4. Selvaraj V, Jiang P, Chechneva O, Lo UG, Deng W. Differentiating human stem cells into neurons and glial cells for neural repair. Front Biosci (Landmark Ed). 2012;17:65-89.
  • 5. Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA. 2004;101(34):12543-8.
  • 6. Mizuseki K, Sakamoto T, Watanabe K, Muguruma K, Ikeya M, Nishiyama A, Arakawa A, Suemori H, Nakatsuji N, Kawasaki H, Murakami F, Sasai Y. Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proc Natl Acad Sci U S A. 2003;100(10):5828-33.
  • 7. Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA.(2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase- immortalized midbrain astrocytes Nat Med 12, 1259–68.
  • 8. Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells. 2008;26(1):55-63.
  • 9. Pekny M, Pekna M, Messing A, et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol. 2016;131(3):323-345.
  • 10. Krencik R, Zhang SC. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc. 2011;6(11):1710-1717.
  • 11. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling [published correction appears in Nat Biotechnol. 2009 May;27(5):485]. Nat Biotechnol. 2009;27(3):275-280.
  • 12. Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1129- 1133.
  • 13. Hu BY, Weick JP, Yu J, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A. 2010;107(9):4335-4340.
  • 14. Lafaille FG, Pessach IM, Zhang SY, et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature. 2012;491(7426):769-773.
  • 15. Mormone E, D'Sousa S, Alexeeva V, Bederson MM, Germano IM. "Footprint-free" human induced pluripotent stem cell-derived astrocytes for in vivo cell-based therapy. Stem Cells Dev. 2014;23(21):2626-2636.
  • 16. Le magueresse C, Monyer H. GABAergic interneurons shape the functional maturation of the cortex. Neuron. 2013;77(3):388- 405.
  • 17. Goulburn AL, Stanley EG, Elefanty AG, Anderson SA. Generating GABAergic cerebral cortical interneurons from mouse and human embryonic stem cells. Stem Cell Res. 2012;8(3):416- 26.
  • 18. Yang N, Chanda S, Marro S, et al. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods. 2017;14(6):621-628.
  • 19. Gonzalez-Ramos A, Waloschková E, Mikroulis A, Kokaia Z, Bengzon J, Ledri M, Andersson M, Kokaia M. Human stem cell-derived GABAergic neurons functionally integrate into human neuronal networks. Sci Rep. 2021;11(1):22050.
  • 20. Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang SC. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc. 2013;8(9):1670-9.
  • 21. Sun AX, Yuan Q, Tan S, Xiao Y, Wang D, Khoo AT, Sani L, Tran HD, Kim P, Chiew YS, Lee KJ, Yen YC, Ng HH, Lim B, Je HS. Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells. Cell Rep. 2016;16(7):1942-53.
  • 22. Goldman SA, Kuypers NJ. How to make an oligodendrocyte. Development. 2015;142(23):3983-3995.
  • 23. Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):37-53.
  • 24. Li L, Chao J, Shi Y. Modeling neurological diseases using iPSC- derived neural cells : iPSC modeling of neurological diseases. Cell Tissue Res. 2018;371(1):143-151.
  • 25. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann AL, Cui QL, Schambach A, Kim KP, Bachelin C, Marteyn A, Hargus G, Johnson RM, Antel J, Sterneckert J, Zaehres H, Schöler HR, Baron-Van Evercooren A, Kuhlmann T. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 2017;114(11):E2243-E2252.
  • 26. Shaker MR, Pietrogrande G, Martin S, Lee JH, Sun W, Wolvetang EJ. Rapid and Efficient Generation of Myelinating Human Oligodendrocytes in Organoids. Front Cell Neurosci. 2021;15:631548.
  • 27. Qu Q, Li D, Louis KR, et al. High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nat Commun. 2014;5:3449.
  • 28. Bianchi F, Malboubi M, Li Y, et al. Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem Cell Res. 2018;32:126-134.
  • 29. Sances S, Bruijn LI, Chandran S, Eggan K, Ho R, Klim JR, Livesey MR, Lowry E, Macklis JD, Rushton D, Sadegh C, Sareen D, Wichterle H, Zhang SC, Svendsen CN. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci. 2016;19(4):542-53.
  • 30. Osaki T, Uzel SGM, Kamm RD. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci Adv. 2018;4(10):eaat5847.
  • 31. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275-80.
  • 32. Li W, Sun W, Zhang Y, et al. Rapid induction and long-term self- renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A. 2011;108(20):8299–8304.
SDÜ Tıp Fakültesi Dergisi-Cover
  • ISSN: 1300-7416
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2015
  • Yayıncı: Süleyman Demirel Üniversitesi