Sivas ili Kangal-Çartıl yöresi kromit cevherlerinin sarsıntılı masa zenginleştirme ürünlerinin çeşitli teknikler kullanılarak tane şekilleri açısından incelenmesi

Bu çalışmanın amacı; Sivas ili Kangal yöresinde faaliyet gösteren Aksu Madencilik kromit zenginleştirme tesisindeki iri ve ince sarsıntılı masa zenginleştirme devrelerinden alınan temsili örneklere ait tanelerin şekillerinin hızlı ve güvenilir sonuçlar veren dinamik görüntü analizi (DGA) ile incelenmesi, taramalı elektron mikroskop (SEM) ve stereo-mikroskop analizleriyle karşılaştırılması ve masa ayırmasındaki etkisinin yorumlanmasıdır. Her bir ölçümde 10,000’den fazla tanenin sayıldığı en az 4 tutarlı ölçümün ortalamasına göre, konsantre ürünlerinin (%95 güven aralığında) besleme, ara ürün ve artık ürünlerine göre en yüksek dairesellik (C) değerine sahip, artık ürünlerinin ise en düşük C değerine sahip (en uzun) tanelerden oluştuğu bulunmuştur. Bu sonuç, farklı şekilde tanelerin masa yüzeyi üzerinde farklı hareketler yapmasına dayandırılmaktadır. DGA görüntüleri, SEM görüntüleri ve stereo-mikroskop görüntüleri DGA sonuçlarını desteklemektedir ve literatürde daha önce bildirilen çalışmalar ile uyumludur. Sonuçlar, aynı boyut aralığında sarsıntılı masa ayrımında sadece tane yoğunluğunun değil aynı zamanda tane şeklinin de ayırmaya etkisi olduğunu göstermektedir. Bu çalışma kromitin gravite zenginleştirilmesi devrelerinde, sarsıntılı masalara beslemek için daha yuvarlak taneler üreten öğütme sistemlerinin tercih edilerek daha yüksek ayırma veriminin elde edilebilmesine ışık tutacaktır.

Investigation of Shaking Table Beneficiation Circuit Streams of Chromite Ore from Sivas Kangal-Cartıl Region in Terms of Particle Shapes by Using Various Techniques

The purpose of this study is not only to examine the shapes of representative samples taken from coarse and fine shaking table concentration circuits in a chromite concentration plant (Aksu Group Mining Industry Co. Inc.) operating in the Kangal region of Sivas, with dynamic image analysis (DIA) that gives fast and reliable results, but also to compare their results with scanning electron microscope (SEM) and stereo-microscope analyzes and to interpret the effect of their shapes on table separation. Based on more than 4 successive measurements for each sample by counting more than 10,000 particles, concentrate products (at 95% confidence interval) have the highest Circularity (C) values compared to other products, whereas tailing products have the lowest C values (elongated particles) compared to other products. The difference in shape of products is attributed to different movements of the particles on the table surface. In addition, DGA images, SEM images and stereo-microscope images support the DGA results and are compatible with previous studies in the literature. The results show that not only particle density but also particle shape has an effect on the shaking table separation at the same size range. The results of this study will shed light on the fact that higher separation efficiency can be obtained by preferring grinding systems that produce more rounded grains for feeding into shaking tables in chromite gravity enrichment circuits.

___

  • Ahmed, M. M. 2011. Optimization of a jigging process using statistical technique. International Journal Coal Preparation and Utilization. 31, 112–123.
  • Allen, T. 1990, Particle size measurement. fourth ed. New York: Chapman & Hall.
  • Aplan, F. F. 2003. Chapter 6: Gravity Concentration, Fuerstenau, M. C. ve Han, K. N. (Ed.). Principles of Mineral Processing. Littleton, Co: SME. 185-219.
  • Boucher, D. 2017, Observation of iron ore particle flow in a mineral spiral concentrator by position emission particle tracking (PEPT), [Doktora tezi]. [Montreal]: McGill University.
  • Brits, B. R. 1991, Effect of particle size in gravity separation processes at Palabora, South Africa, Palabora Mining Company, South Africa, Institution of Mining and Metallurgy, African Mining ’91, Institution of Mining and Metallurgy.
  • Cierpisz, S., Kryca, M., Sobierajski, W. 2016. Control of coal separation in a jig using a radiometric meter, Minerals Engineering. 95, 59–65.
  • Das, A. 2009, Chapter 1, Mineral Processing. A Continuing Education Course for Metallurgy for Engineers. December 14-16, 2009, Jamshedpur: NML, 1-37.
  • Dehghani, F., Rahimi, M., Rezai, B. 2012. Influence of particle shape on the flotation of magnetite, alone and in the presence of quartz particles, December, Journal of Southern African Institute of Mining and Metallurgy. 113(12), 905-911.
  • Drzymala, J. 2007. Mineral Processing, Foundations of theory and practice of minerallurgy, 1st edition, Wroclaw University of Technology: Oficyna Wydawnicza PWr., www.ig.pwr.wroc.pl/minproc, ISBN 978-83-7493-362-9, 32.
  • European Commission, 2020. Study on the EU’s list of Critical Raw Materials, Factsheets on Non-critical Raw Materials, p. 70.
  • Fortier, S. M., Nassar, N. T., Lederer, G. W., Brainard, Jamie, Gambogi, Joseph, McCullough, E.A. 2018. Draft critical mineral list—Summary of methodology and background information—U.S. Geological Survey technical input document in response to Secretarial Order No. 3359: U.S. Geological Survey Open-File Report 2018–1021, 15 p., https://doi.org/10.3133/ofr20181021, https://pubs.usgs.gov/of/2018/1021/ofr20181021.pdf, [Erişim tarihi: 8 Mart 2021].
  • Guertin, J., Cynthia, J. A. J., Avakian, P. 2005. Chromium (VI) Handbook. Independent Environmental Technical Evaluation Group (IETEG).
  • Gupta, A., Yan, D. S. 2006. Introduction to Mineral Processing Design and Operation, Gupta A. ve Yan, D. (Ed.). Amsterdam: Elsevier. 2nd eds.
  • Hicyilmaz, C., Ulusoy, U., Bilgen, S., Yekeler, M., Akdogan, G. 2006. Response of rough and acute surfaces of pyrite with 3-D approach to the flotation. Journal of Mining Science. 42, 393-402.
  • Kademli, M., Gülsoy, O. Y. 2012. The role of particle size and solid contents of feed on mica-feldspar separation in gravity concentration. Physicochemical Problems of Mineral Processing. 48(2), 645−654.
  • Kawatra, S. K., Caraon, J. T. 2013. Benefication of Phosphate Ore. Society for Mining, Metallurgy & Exploration: Colorado.
  • Little, L., Mainza, A. N., Becker, M., Wiese, J. 2017. Fine grinding: How mill type affects particle shape characteristics and mineral liberation, Minerals Engineering. 111, 148-157.
  • Maharaj, L., Loveday, B. K., Pocock, J. 2012. Gravity separation of a UG-2 ore secondary sample of the reduction of chromite minerals. Minerals Engineering. 30, 99-101.
  • Mudd, G. M., Werner, T. T., Weng, Z.-H., Yellishetty, M., Yuan, Y., McAlpine, S. R. B., Skirrow, R. G., Czarnota, K. 2018. Critical Minerals in Australia: A Review of Opportunities and Research Needs, Records 2018/051. Geoscience Australia, Canberra. Available at: https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/124161 [Erişim tarihi: 8 Mart 2021].
  • Napier-Munn, T. J., Alford, R. A. 1991. The causes of heavy mineral loss from mineral sands wet concentrators. The AusIMM Proceedings, 19–30.
  • Ofori-Sarpong, G., Amankwah, R.K. 2011. Comminution environment and gold particle morphology: effects on gravity concentration. Minerals Engineering. 24, 590-592.
  • Phengsaart, T., Ito, M., Hamaya, N., Tabelin, C.B., Hiroyoshi, N. 2018. Improvement of jig efficiency by shape separation, and a novel method to estimate the separation efficiency of metal wires in crushed electronic wastes using bending behavior and “entanglement factor,” Minerals Engineering. 129, 54-62.
  • Pita, F., Castilho, A. 2016. Influence of shape and size of the particles on jigging separation of plastics mixture, Waste Management. 48, 89-94.
  • Pita, F., Castilho, A. 2017. Separation of plastics by froth flotation. The role of size, shape and density of the particles, Waste Management. 60, 91-99.
  • Pryor, E. J. 1965.Mineral Processing. 3rd ed., Amsterdam: Elsevier, 349.
  • Quantachrome, 2021. http://www.quantachrome.com, [Erişim tarihi: 8 Mart 2021].
  • Richard, G., Touhami, S., Zeghloul, T., Dascalescu, L. 2017. Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator, Waste Management, 60, 112-122.
  • Richards, R.L., Locke, S.B. 1940. Textbook of Ore Dressing. 3rd ed. New York: McGraw-Hill.
  • Se´bastien, J., Rabotin, K., Bourgeois, F., Climent, E´. 2012. Experimental validation of a fluid dynamics based model of the UF Falcon concentrator in the ultrafine range. Separation and Purification Technology. 92, 129-135.
  • Singh, R. K., Dey, S., Mohanta, M. K., Das, A. 2014. Enhancing the Utilization Potential of a Low Grade Chromite Ore through Extensive Physical Separation, Separation Science and Technology. 49(12), 1937-1945, DOI: 10.1080/01496395.2014.903495.
  • Sivamohan, R. 1985. A Study of Gravity Concentration with emphasis on surface phenomena, 45D, [Doktora tezi]. [Norrbotten]: Lulea University of Technology.
  • Thompson. J. V. 1958. The humphreys spiral concentrator its place in ore dressing, Mining Engineering. (January) 84-87.
  • Ulusoy, U. ve Atagun, O. N. 2022. Particle shape characterization of shaking table streams in a Turkish chromite concentration plant by using dynamic imaging and microscopical techniques, Particulate Science and Technology, DOI: 10.1080/02726351.2022.2046666. [Erişim tarihi: 8 Mart 2022].
  • Vision Analytical, 2021. Why particle shape is important. https://particle- shape.com/why-particle-shape-is-important, [Erişim tarihi: 8 Mart 2021].
  • Walsh, D. E., Kelly, E. G. 1992. An investigation of the performance of a spiral using radioactive gold tracers. Minerals and Metallurgical processing. 105-109, August.
  • Wills, B. A., Finch, J. 2016. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 8th Edition, Oxford: Butterworth Heinemann, ISBN: 9780080970530.
  • Zhao, Y. Zhang, Y. Bao, S. Liu, T. Bian, Y. Liu, X. Jiang M. 2013. Separation factor of shaking table for vanadium pre-concentration from stone coal, Separation and Purification Technology, 115, 92-99.