Biyo-hidrometalurjik yöntemler kullanarak kullanılmış vanadyum katalizörlerinden vanadyum geri kazanımının tekno-ekonomik analizi

Sülfürik asit üretiminde katalitik indirgemeyi sağlayan vanadyum katalizörlerinin yaygın kullanımı, tehlikeli atık olarak kabul edilen kullanılmış katalizörlerin zamanla daha da artmasına neden olmaktadır. Kullanılmış vanadyum katalizörler (KVK), yüksek oranda SiO₂ ve ağır metal içeriğinin yanında kritik metal listesinde yer alan vanadyumu da içermektedir. Döngüsel ekonomi politikası uygulamalarına yönelik artan talep, bu atıklardan vanadyumun kazanımı için tekno-ekonomik açıdan uygun bir yol geliştirmeyi gerektirmektedir. Bu çalışmada, kimyasal liç (1 M sülfürik asit ve %1 h/h hidrojen peroksit) ve biyoliç (Acidithiobacillus ferrooksidans, Acidithiobacillus thiooxidans ve Leptospirillum ferrooxidans içeren karışık bakteri kültürü) yöntemleri kullanılmış ve KVK’lardan vanadyum kazanımı değerlendirilmiştir. Katalizörlerde bulunan vanadyum, hidrometalurjik ve biyohidrometalurjik yöntemlerle yüksek verimle (%96,8 ve %97,1) kazanılmıştır. Geliştirilen modelleme de biyohidrometalurjik yöntemin yatırım maliyetinin 3,8 yılda geri karşılanacağı ve geri ödeme yüzdesi %89,32 olarak öngörülmüştür. Hidrometalurjik yöntemde ise, yatırım maliyetinin 1,2 yılda karşılanacağı ve geri ödeme yüzdesinin %80,3 olduğu belirlenmiştir. Bu sonuçlar hidrometalurjik yaklaşımın daha hızlı, biyohidrometalurjik yaklaşımın ise daha ekonomik bir yöntem olduğunu göstermiştir.

Techno-economic analysis of vanadium recovery from spent vanadium catalysts using bio-hydrometallurgical methods

The widespread use of vanadium catalysts that provide catalytic reduction in sulfuric acid production causes the spent catalysts considered as hazardous waste to further increase in time. The spent vanadium catalysts (SVC) contain vanadium, which is on the critical metal list, as well as high SiO₂ and heavy metal content. Increasing demand for circular economic policy practices requires the development of a techno-economically feasible route for the recovery of vanadium from these wastes. In this study, chemical leaching (1 M sulfuric acid and 1% v/v hydrogen peroxide) and bioleaching (mixed bacteria culture including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans) methods were used and vanadium recovery from SVC was evaluated. The vanadium contained in the catalysts was recovered with high efficiency (96.8% and 97,1%) by hydrometallurgical and biohydrometallurgical methods. In the developed modeling, it is predicted that the investment cost of the biohydrometallurgical method will be covered in 3.8 years and the payback percentage is 89.32%. In hydrometallurgical method, it has been determined that the investment cost will be covered in 1.2 years and the repayment percentage is 80.3%. These results show that the hydrometallurgical approach is a faster method and the biohydrometallurgical approach is a more economical method.

___

  • Avrupa Komisyonu, 2020. Study on the EU's list of Critical Raw Materials. https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en [Erişim tarihi: 14 Mayıs 2021].
  • Cao, Y., Yuan, H., Du, H., Dreisinger, D., Li, M., 2021. A clean and efficient approach for recovery of vanadium and tungsten from spent SCR catalyst. Minerals Engineering. 165, 106857. https://doi.org/10.1016/j.mineng.2021.106857.
  • Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C., Ekberg, C., 2019. Recovery of precious metals from electronic waste and spent catalysts: a review. Resour Conserv Recycl. 141, 284–298. https://doi.org/10.1016/j.resconrec.2018.10.041.
  • EPA 3050B, 1996. Acid digestion of sediments, sludges, and soils. https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf. [Erişim tarihi: 10 Mart 2019].
  • Erust, C., Akcil, A., Bedelova, Z., Anarbekov, K., Baikonurova, A., Tuncuk, A., 2016. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: laboratory and semi-pilot tests. Waste Manag. 49, 455–461. https://doi.org/10.1016/j.wasman.2015.12.002.
  • Guerrero-Pérez, M.O., 2017. Supported, bulk and bulk-supported vanadium oxide catalysts: a short review with an historical perspective. Catal Today. 285, 226–33. https://doi.org/10.1016/j.cattod.2017.01.037.
  • Ho, E.M., Kyle, J., Lallence, S., Muir, D.M., 1994. Recovery of vanadium from spent catalyst and alumina residues. IMM Hydrometallurgy. Chapman & Hall, London, pp. 1105–1121.
  • https://www.vanadiumprice.com/. [Erişim tarihi: 26 Aralık 2021].
  • Le, M.N., Lee, M.S., 2020. A review on hydrometallurgical processes for the recovery of valuable metals from spent catalysts and life cycle analysis perspective. Miner Process Extr Metall Rev. https://doi.org/10.1080/08827508.2020.1726914.
  • Liu, L., Wang, L., Su, S., Yang, T., Dai, Z., Qing, M., Xu, K., Hu, S., Wang, Y., Xiang, J., 2019. Leaching behavior of vanadium from spent SCR catalyst and its immobilization in cement-based solidification/stabilization with sulfurizing agent. Fuel 243, 406–412. https://doi.org/10.1016/j.fuel.2019.01.160.
  • Mikoda, B., Potysz, A., Gruszecka-Kosowska, A., Kmiecik, E., Tomczyk, A., 2020a. Spent sulfuric acid plant catalyst: valuable resource of vanadium or risky residue? Process comparison for environmental implications. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-11349-z.
  • Mikoda, B., Potysz, A., Kucha, H., Kmiecik, E., 2020b. Vanadium removal from spent sulfuric acid plant catalyst using citric acid and Acidithiobacillus thiooxidans. Archives of Civil and Mechanical Engineering. 20(4), 132. https://doi.org/10.1007/s43452-020-00136-9.
  • Muddanna, M.H., Baral, S.S., 2019. Leaching of nickel and vanadium from the spent fluid catalytic cracking catalyst by reconnoitering the potential of Aspergillus niger associating with chemical leaching. Journal of Environmental Chemical Engineering. 7(2), 103025. https://doi.org/10.1016/j.jece.2019.103025.
  • Nikiforova, A., Kozhura, O., Pasenko, O., 2016. Leaching of vanadium by sulfur dioxide from spent catalysts for sulfuric acid production. Hydrometallurgy. 164, 31–7. https://doi.org/10.1016/j.hydromet.2016.05.004.
  • Niu, Z., Zou, Y., Xin, B., Chen, S., Liu, C., Li, Y., 2014. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere. 109, 92–8. https://doi.org/10.1016/j.chemosphere.2014.02.059.
  • Ognyanova, A., Ozturk, A.T., Michelis, I. De, Ferella, F., Taglieri, G., Akcil, A., Vegliò, F., 2009. Metal extraction from spent sulfuric acid catalyst through alkaline and acidic leaching. Hydrometallurgy. 100, 20–28. https://doi.org/10.1016/j.hydromet.2009.09.009.
  • Pathak, A., Vinoba, M., Kothari, R., 2020. Emerging role of organic acids in leaching of valuable metals from refinery-spent hydroprocessing catalysts, and potential techno-economic challenges: a review. Crit Rev Environ Sci Technol. 51 (1), 1-43. https://doi.org/10.1080/10643389.2019.1709399.
  • Peng, H., 2019. A literature review on leaching and recovery of vanadium. J. Environ. Chem. Eng. 7, 103313. https://doi.org/10.1016/j.jece.2019.103313.
  • Petrides, D., 2000. Bioprocess design and economics. https://whvvugt.home.xs4all.nl/DrugDesign/BioprocessDesign.pdf. [Erişim tarihi: 22 Temmuz 2020].
  • Romanovskaia, E., Romanovski, V., Kwapinski, V., Kurilo, I., 2021. Selective recovery of vanadium pentoxide from spent catalysts of sulfuric acid production: Sustainable approach. Hydrometallurgy. 200, 105568. https://doi.org/10.1016/j.hydromet.2021.105568.
  • Ullmann's Encyclopedia of Industrial Chemistry, 1994. Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, A25, 644–647.
  • USEPA (United States Environmental Protection Agency), 2003. Hazardous Waste Management System, Vol. 68. Federal Register.
  • Wiecka, Z., Rzelewska-Pielut, M., Cierpiszewski, R., Staszak, K., Regel-Rosocka, M., 2020. Hydrometallurgical recovery of cobalt(II) from spent industrial catalysts. Catalysts. 10 (1), 61. https://doi.org/10.3390/catal10010061.
  • Vegliò, F., Ferella, F., De Michelis, I., Furlani, G., Navarra, M., Pagnanelli, F., Toro, L., Beolchini, F., 2006. Recovery of zinc and manganese from spent batteries. In: Conference ECOMONDO, 8–11 November, 2006.
  • Zeng, L., Cheng, C.Y., 2009. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurization catalysts. Part I: metallurgical processes. Hydrometallurgy. 98, 1–9. DOI: 10.1016/j.hydromet.2009.03.010.