Türkiye’de Bulunan Bazı Sıcak Su Kaynaklarından İzole Edilen Bakterilerin Ksilanaz ve Glukoz İzomeraz Üretimi Yönünden Taranması

Bu çalışmanın amacı Türkiye’nin Ege Bölgesinde bulunan bazı sıcak su kaynaklarından elde edilen termofilik bakterilerin ksilanaz ve glukoz izomeraz üretmi yönünden taranmasıdır. Toplam 68 izolat (Anoxybacillus, Brevibacillus, Geobacillus, Aneurinibacillus, Thermus, Paenibacillus ve Proteobacter) daha önceden bu alanlardan temin edilmiş ve 16S rDNA gen dizilerine göre tanımlanmıştır. Öncelikle petri deneyi ile taranan izolatlar, ilgili enzimlere uygun besiyeri içerisinde ksilanaz için iki gün, glukoz izomeraz için ise 5-6 gün süreyle 50-60 °C’de inkübasyona tabii tutuldu ve pozitif izolatlar belirlendi. Enzim ürettiği belirlenen türler doğrulama için spektrofotometrik analizlere tabi tutuldu, birchwood ksilan ve glukoz substrat olarak kullanıldı. Türlerin çoğunluğu (59 tanesi) ksilanaz aktivitesi yönünden pozitif iken 16 türün de glukoz izomeraz aktivitesine sahip olduğu gözlendi. Izolatlardan 14 tanesinin her iki enzim yönünden de aktif olduğu belirlendi. Paenibacillus, Aneurinibacillus ve Proteobacter türlerinden hiç bir tanesi glukoz izomeraz aktivitesi göstermezken Geobacillus türlerinin glukoz izomeraz aktivitesinin oldukça yüksek olduğu belirlendi. Her iki enzim de aktivitelerini, biyoteknolojik uygulamalar için tercih edilen sıcaklık aralığı olan 50-60 °C’de gösterdi.

Screening of Xylanase and Glucose Isomerase Producing Bacteria Isolated from Hot Springs in Turkey

The aim of this study was screening of xylanase and glucose isomerase producing thermophilic bacteria isolated from some hot springs located to Aegean Region of Turkey. Total sixty eight thermophilic isolates (Anoxybacillus, Brevibacillus, Geobacillus, Aneurinibacillus, Thermus, Paenibacillus and Proteobacter) were collected previously from these fields and identified based on 16S rDNA gene sequences. The isolates were screened with plate assay for determining the xylanase and glucose isomerase production abilities seperately in order to find new strains for industrial processes. After an incubation period of two days for xylanase and 5-6 days for glucose isomerase at 50-60 °C, positive strains were determined. Enzyme producing strains were confirmed by spectrophotemetric measurements with crude enzyme extracts, birchwood xylan and glucose were used as substrates. Most of the strains (59 strains) were positive for xylan degradation while only sixteen of the strains had showed glucose isomerase activity. Fourteen of the strains have showed both xylanase and glucose isomerase activity. None of the Paenibacillus, Aneurinibacillus, and Proteobacter strains were glucose isomerase positive, although the glucose isomerase activity of Geobacillus strains were notably high. Both xylanase and glucose isomerase activities have observed at 50-60 °C which is suitable for biotechnological applications.

___

  • [1] P. Anbu, S. C. Gopinath, A. C. Cihan, and B. P. Chaulagain, “Microbial enzymes and their appli-cations in industries and medicine,” Biomed. Res. Int., pp. 1–3, 2015.
  • [2] M. E. Bruins, A. E. M. Janssen, and R. M. Boom, “Thermozymes and their applications,” Appl. Bi-ochem. Biotechnol. vol 90, pp.155-186, 2001.
  • [3] J. Eichler, “Biotechnological uses of archaeal en-zymes,” Biotechnol. Adv. vol 19, pp. 261-278. 2001.
  • [4] D. Covan, R. Daniel, and H. Morgan, “Thermo-philic proteases: properties and applications,” Trends Biotechnol. vol 3, pp. 68-72, 1985.
  • [5] D. A. Covan, “Thermophilic proteins: stability and function in aqueous and organic solvents,” Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. vol 118, pp.429-438, 1997.
  • [6] A. Gupta, and S. K. Khare, “A protease stable in organic solvents from solvent tolerant strain Pseudomonas aeruginosa,” Bioresour. Technol. vol 97, pp. 1788-1793, 2006.
  • [7] T. Collins, C. Gerday, and G. Feller, “Xylanases, xylanase families and extremophilic xy-lanases,” FEMS Microbiology Reviews. vol 29, pp. 3–23, 2005.
  • [8] N. Kulkarni, A. Shendye, and M. Rao, “Molecu-lar and biotechnological aspects of xylanases,” FEMS Microbiology Reviews, vol. 23, no 4, pp. 411–456, 1999.
  • [9] Q.K. Beg, M. Kapoor, L. Mahajan, and G. Hoondal, “Microbial xylanases and their indus-trial applications: a review,” Applied Microbiolo-gy and Biotechnology. vol 56, pp. 326–338, 2001.
  • [10] A. Blanco, P. Diaz, J. Zueco, P. Parascandola, and F. I. J. Pastor, “A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic en-zymes,” Microbiology, vol 145, pp. 2163–2170. 1999.
  • [11] C. Tachaapaikoon, K. L. Kyu, and K. Ratanakhanokchai, “Purification of xylanase from alkaliphilic Bacillus sp. K-8 by using corn husk column,” Process Biochemistry, vol 12, pp. 2441–2445, 2006.
  • [12] S. B. Chidi, B. Godana, I. Ncube, Van E. J. Rensburg, A. Cronshaw, and E. K. “Abotsi Pro-duction, purification and characterization of celullase-free xylanase from Aspergillus terreus UL 4209,” African Journal of Biotechnology, vol 7, no 21, pp. 3939–3948, 2008.
  • [13] S. Ahmed, S. Riaz, and A. Jamil, “Molecular cloning of fungal xylanases: an overview,” Ap-plied microbiology and biotechnology, vol 84, no 1, pp. 19-35, 2009.
  • [14] L. A. Van den Broek R. M. Lloyd, G. Beldman, J. C. Verdoes, B. V. McCleary, and A. G. Vor-agen, “Cloning and characterization of arabi-noxylan arabinofuranohydrolase-d3 (Axhd3) from Bifi-dobacterium adolescetis DSM20083,” App. Microbiol. and Biotechnology. vol 67, pp. 641–647, 2005.
  • [15] D. Verma, A. Anand, and T. Satyanarayana, “Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacil-lus thermodenitrificans TSAA1: cloning, expres-sion, characteristics and its applicability in gener-ating xylooligosaccharides and fermentable sug-ars,” App. Biochemistry and Biotechnology, vol 170, pp. 119-130, 2013.
  • [16] K. Bouacem, et al. “Partial characterization of xylanase produced by Caldicoprobacter alge-riensis, a new thermophilic anaerobic bacterium isolated from an Algerian hot spring,” Appl Bio-chem Biotechnol. vol 174, pp. 1969–1981, 2014.
  • [17] N. Annamalai, R. Thavasi, S. Jayalakshmi, and T. Balasubramanian, “Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated from marine environment,” Indian J Bio-technol. vol 8, pp. 291–297, 2009.
  • [18] J. Bradner, M. Gillings, and K. Nevalainen, “Qualitative assessment of hydrolytic activities in Antarctic microfungi grown at different tem-peratures on solid media,” World J Microbiol Biotechnol. vol 15, pp. 131–132, 1999.
  • [19] B. Sonnleitner, and A. Fiechter, “Advantages of using thermophiles in biotechnological processes: expectations and reality,” Trends in Biotechnolo-gy, no 1, pp. 74-80, 1983.
  • [20] S. H. Bhosale, M. B. Rao, and V. V. Deshpande, “Molecular and industrial aspects of glucose isomerase,” Microbiol Rev. vol 60, pp. 280–300. 1996.
  • [21] M. G. Wovcha, D. L. Steuerwald, and K. E. Brooks, “Amplification of D-xylose and D-glucose isomerase activities in Escherichia coli by gene cloning,” Appl. Environ. Microbiol. vol 45, pp. 1402–1404, 1983.
  • [22] C. Bucke, In "Microbial Enzymes and Biotech-nology" (Ed. W.M.Fogarty); Applied Science Pub., London; pp. 93-129, 1983.
  • [23] Y. B. Tewari, and R. N. Goldberg, “Thermody-namics of the conversion of aqueous glucose to fructose,” Appl. Biochem. Biotechnol. vol 11, pp. 17–24, 1985.
  • [24] F. H. Verhoff, G. Boguslawski, O. J. Lautero, S. T. Schlager, and Y. C. Jao, “Glucose isomerase,” In “H. Comprehensive biotechnology;” Balanch, W., Drew, S., Wang, D.I.C, Pergamon Press, Ox-ford, pp. 837–859, 1985.
  • [25] K. Inan, “İzmir ve Aydın illerindeki bazı kaplıca-lardan izole edilen termofilik bakteri izolatlarının moleküler taksonomisi ve D1021 izolatının glu-koz izomerazının karakterizasyonu,” Doktora te-zi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, 2011.
  • [26] A. Gessesse, and B. A. Gashe, “Production of alkaline xylanase by an alkaliphilic Bacillus sp. Isolated from a soda lake,” Journal of applied Microbiology, vol 83, pp. 402-406, 1997.
  • [27] G. L. Miller, “Use of dinitrosalicyclic acid reagent for determination of reducing sugars,” Anal Chem. vol 31, pp. 426-428, 1959.
  • [28] C. Lee, L. Bhatnagar, B. C. Saha, Y. E. Lee, M. Takagi, T. Imanaka, M. Bagdasarian, and J. G. Zeikus, “Cloning and Expression of the Clostrid-ium thermosulfurogenes Glucose Isomerase Gene in Escherichia coli and Bacillus subtilis,” Appl. Environ. Microbiol. vol 56, pp. 2638–2643, 1990.
  • [29] Z. Dische, and E. A. Borenfreund, “New Spec-trophotometric Method for the Detection and Determination of Ketosugars and Trioses,” J.Biol.Chem. vol 192, pp. 583-587, 1951.
  • [30] X. Huang, J. Lin, X. Ye, and G. Wang, “Molecu-lar characterization of a thermophilic and salt-and alkaline-tolerant xylanase from Planococcus sp. SL4, a strain isolated from the sediment of a so-da lake,” J Microbiol Biotechnol. vol 25, pp. 662–671, 2015.
  • [31] S. Subramanian, and P. Prema, “Cellulase-free xylanases from Bacillus and other micro-organisms,” FEMS Microbiol Lett. vol 183, pp. 1–7, 2000.
  • [32] S. Gupta, R. C. Kuhad, B. Bhushan, and G.S. Hoondal, “Improved xylanase production from a haloalkalophilic Staphylococcus sp. SG-13 using inexpensive agricultural residues,” World J Mi-crobiol Biotechnol. vol 17, pp. 5–8, 2001.
  • [33] D. Chapla, H. Patel, D. Madamwar, and A. Shah, “Assessment of a thermostable xylanase from Paenibacillus sp. ASCD2 for application in prebleaching of eucalyptus kraft pulp,” Waste Bi-omass Valor. vol 3, pp. 269–274, 2012.
  • [34] L. Dahlberg, “Thermostable Xylanases from Rhodothermus marinus,” Ph.D. dissertation, Bio-technology, Lund University, 1996.
  • [35] H. Chakdar, M. Kumar, K. Pandiyan, A. Singh, K. Nanjappan, P. L. Kashyap, and A. K. Sri-vastava, “Bacterial xylanases: Biology to bio-technology,” Biotech. vol 6, no 2, pp. 150, 2016.
  • [36] D. Verma, and T. Satyanarayana, “Cloning, ex-pression and applicability of thermo-alkali-stablexylanaseof Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues,” Biores Technol. vol 107, pp. 333–338, 2012.
  • [37] A. Bhalla, K. M. Bischoff, and R. K. Sani, “Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WsUcF1 uti-lizing lignocellulosic biomass,” Front Bioeng Bio-technol. vol 3, pp. 84, 2015.
  • [38] M. Kacagan, S. Canakci, C. Sandalli, K. Inan, D. N. Colak, and A. O. Belduz, “Characterization of a xylanase from a thermophilic strain of Anox-ybacillus pushchinoensis A8,” Biologia, Sec. Cel-lular and Molecular Biology, vol 63, no 5, pp. 599-606, 2008.
  • [39] J. T. Ellis, and T. S. Magnuson, “Thermostable and alkalistable xylanases produced by the ther-mophilic bacterium Anoxybacillus flavither-mus TWXYL3,” ISRN Microbiol. pp. 517-524, 2012.
  • [40] R. O. Marshall, and E. R. Kooi, “Enzymatic conversion of D-glucose to Dfrucose,” Sci. vol 125, pp. 648–649, 1957.
  • [41] S. A. Barker, and J. A. Shirley, “Glucose oxidase, Glucose dehydrogenase, Glucose isomerase, β-Galactosidase and Invertase,” In Microbial En-zymes and Bioconversion, A. H. Rose (eds.). San Francisco, London New York, Toronto and Syd-ney: Academic Press. pp. 173-226, 1980.
  • [42] I. V. Ulezlo, A. V. Ananychev, and A. M. Bez-borodov, “Glucose isomerase (xylose ketol iso-merase),” Uspekhi Biologicheskoy Khimii (Mos-cow), vol 27, pp. 136-163, 1986.
  • [43] C. A. Kent, and A. N. Emery, “The preparation of an immobilised glucose isomerase. I. The pro-duction and selected properties of the partially purified enzyme from Lactobacillus brevis,” Journal of Appl. Chem. And Biotechn. vol 23, no 9, pp. 689-703, 1973.
  • [44] M. Weber, M. J. Foglietti, and F. Percheron, “Pu-rification of alpha-amylase by affinity chroma-tography on cross-linked starch,” Biochimie, vol 58, pp. 1299–1302, 1976.
  • [45] J. Chauthaiwale, and M. Rao, “Production and purifi cation of extracellular D-xylose isomerase from an alkaliphilic, thermophilic Bacillus sp.” Appl. Environ. Microbiol. vol 60, pp. 4495–4499, 1994.
  • [46] G. Boguslawski, and M. J. Rynski, “Novel strain of Bacillus licheniformis useful in production of glucose isomerase and method of screening Ba-cillus mutants for the ability to produce glucose isomerase in the absence of xylose,” U.S. patent 4,355,103. 1982.
  • [47] C. A. Smith, M. Rangarajan, and B. S. Hartley, “D-Xylose (D-glucose) isomerase from Arthro-bacter strain NRRL B3728,” Biochem. J. vol 277, pp. 255–261, 1991.
  • [48] A. N. Moneke et al. “D-xylose isomerases from a newly isolated strain, Paenibacillus sp., and from Alcaligenes ruhlandii: isolation, characterization and immobilisation to solid supports,” Appl Micr B. vol 50, no 5, pp. 552-557, 1998.
  • [49] H. Karaoglu, D. Yanmis, F. A. Sal, A. Celik, S. Canakci, and A. O. Belduz, “Biochemical char-acterization of a novel glucose isomerase from Anoxybacillus gonensis G2 T that displays a high level of activity and thermal stability,” J Mol Catal B: Enzym, vol 97, pp. 215–224, 2013.
  • [50] L. Konak, Y. Kolcuoglu, E. Ozbek, A. Colak, and B. Ergenoglu, “Purification and characteri-zation of an extremely stable glucose isomerase from Geobacillus thermodenitrificans Th2,” App. Biochem. and Microbiol. vol 50: pp. 25-29, 2014.
  • [51] K. Dekker, H. Yamagata, K. Sakaguchi, and S. Udaka, “Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermo-stable xylose isomerases,” J Bacteriol. vol 173, no 10, pp. 3078–3083, 1991.
  • [52] K. Inan Bektas, A. Ozer, H. I. Guler, A. O Belduz, and S. Canakci, “Brevibacillus gelatini sp. nov., isolated from a hot spring,” Int. Journal of Systematic and Evolutionary Microbiology, vol 66, pp. 712-718, 2016.