The Potential of the Karaman Wastewater Treatment Plant to Generate Electricity with MHP and Reduction of Electricity Bill Amounts by Adjusting Working Hours of the Facility

The Potential of the Karaman Wastewater Treatment Plant to Generate Electricity with MHP and Reduction of Electricity Bill Amounts by Adjusting Working Hours of the Facility

In this study, in order to reduce the electricity consumption / cost of the Karaman Wastewater Treatment plant, which has the highest flow and electricity consumption in Sakarya, the arrangements that can be made during the working hours of the treatment plant and the generation of electricity by the MHP that can be installed between the outlet of the facility and the discharge point of the wastewater are examined. A change of 17% in the electricity bill costs and up to 50% in the flow rates were observed. Wastewater treatment plant projects keep their capacities high, considering the needs of the next 20-30 years. Based on these results, it is determined that if the electricity consumption amounts in the peak time interval where the unit price of electricity is high is shifted to day and night time zones, the electricity costs of the facilities will decrease. In addition, it has been shown that a part of its own electricity consumption will be met by the micro hydro power plant to be installed between the outlet of the facility and the discharge point.

___

  • [1] https://www.enerji.gov.tr/tr-TR/Sayfalar/Elektrik [Accessed-12-Jan- 2020]
  • [2] https://www.enerjiatlasi.com/hidroelektrik/ [Accessed-14-Jan- 2020]
  • [3] http://iklim.cob.gov.tr/iklim/Files/ Mevzuat/kyoto_protokol.pdf [Accessed-14-Jan-2020]
  • [4] https://www.haberturk.com/seragazi-emisyonlari-2429941-ekonomi [Accessed-15-Jan- 2020]
  • [5] Çoban,O.,Şahbaz Kılınç,N., Yenilenebilir Enerji Tüketimi Ve Karbon Emisyonu İlişkisi: Tr Örneği- Sosyal Bilimler Enstitüsü Dergisi Sayı:38 Yıl: 2015/1 (195-208 s.)
  • [6] Resmi Gazete (31.12.2004 tarih ve 25687 sayılı). Su Kirliliği Kontrolü Yönetmeliği
  • [7] Samsunlu, A.(2011). Atık suların arıtılması. Birsen Yayınevi
  • [8] Özcan,E.(2014).Türkiye kıyılarında yüzme suyu profillerinin belirlenmesi ve turizmde atıksu yönetimi https://webdosya.csb.gov.tr/db/tay/webmenu/webmenu13378.pdf [Accessed-04-Jan- 2020]
  • [9] Öztürk,İ.(2017).Atık su mühendisliği. Teknik Kitaplar Serisi(İSKİ) http://www.iski.gov.tr/web/assets/SayfalarDocs/e-kutuphane/kultur/docs/at%C4%B1ksu-m%C3%BChendisli%C4%9Fi.pdf [Accessed-12-Jan- 2020]
  • [10] Tüik(2018).Belediye atık su istatistikleri. http://www.tuik.gov.tr. [Accessed-09-Jan- 2020]
  • [11] Venkatesh, G. & Brattebø, H. (2011). Energy consumption, costs and environmental impacts for urban water cycle services: case study of Oslo (Norway). Energy 36(2), 792–800.
  • [12] Kwok, S. C., Lang, H., O’Callaghan, P. & Stiff, M. (2010). Water Technology Markets 2010 : Key Opportunities and Emerging Trends. Media Analytics Ltd, Oxford.
  • [13] http://www.emo.org.tr/ekler/38a62084dd5b1ff_ek.pdf .[Accessed-12-Jan- 2020]
  • [14] https://www.tarimorman.gov.tr/SYGM/Belgeler/ar%C4%B1tma%20norm%20rehberi/AAT%20Tasar%C4%B1m%20 Rehberi%20(1).pdf [Accessed-19-Jan- 2020]
  • [15] Resmi Gazete(12.05.2019 tarih ve 30772 sayılı). Elektrik Piyasasında Lisanssız Elektrik Üretim Yönetmeliği
  • [16] Williams, A. A. (1996). Pumps as Turbines for Low Cost Micro Hydro Power. World Renewable Energy Congress, Denver,USA.
  • [17] Williams, A. A., Smith, N. P. A., Bird, C. & Howard, M. (1998). Pumps as turbines and induction motors as generators for energy recovery in water supply systems. Journal of the Chartered Institute of Water and Environmental Management 12, 175–178.
  • [18] Mikus, K. (1984). Erfahrungen mit Kreiselpumpenanlagen zur Energieruckgewinnung aus dem Trinkwassersystem. Das Gasund Wasserfach – Wasser/Abwasser 124(4), 159–163.
  • [19] Erkan,D.,Yılmaz,T.,Yücel,A.,Yılmaz, A.,Tel,A. & Uçar,D.(2018). Atıksu Arıtma Tesislerinde Enerji Kazanımı için Mikro Ölçekte Hidroelektrik Santrallerin Uygulanabilirliği. HU J. of Eng. 02 (2018) p.1-6
  • [20] Engineering & Technology Magazine (2010). Power generation by Archimedes screw.
  • [21] https://www.hurriyet.com.tr/gaski-atik-su-ile-enerji-uretecek-40215041 [Accessed-18-Jan- 2020]
  • [22] http://www.yekenergy.com/referanslar/aski-arsimet-burgulu-elektrik-uretim-santrali/ [Accessed-28-Jan- 2020]
  • [23] McNabola, A., Williams, A. P. & Coughlan, P. (2013). Energy recovery in water supply networks: an assessment of the potential of micro hydropower. Water and Environment Journal 27, 435–436.
  • [24] Engelhardt, M. O., Skipworth, P. J., Savic, D. A., Saul, A. J. & Walters, G. A. (2000). Rehabilitation strategies for water distribution networks – a literature review with a UK perspective. Urban Water 2(2), 153–170.
  • [25] Giugni, M., Fontana, N. & Portolano, D. (2009). Energy Savings policy in water distribution networks. Proceedings of the International Conference on Renewable Energies & Power Quality, Valencia, Spain.
  • [26] http://www.mneproje.com/public/website/news/atiksu-aritma-hes_20200131070151.pdf-[Accessed-22-Jan-2020]
  • [27] Gaius-obaseki, T. (2010). Hydropower opportunities in the water industry. International Journal of Environmental Sciences 1(3), 392–402.
  • [28] Resmi Gazete (01.10.2010 tarih ve 27716 sayılı).Çevre Kanununun 29. Maddesi Uyarınca Atık Su Arıtma Tesislerinin Teşvik Tedbirlerinden Faydalanmasında Uyulacak Usul Ve Esaslara Dair Yönetmelik
Sakarya University Journal of Science-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi