Structural and Microhardness Studies of Rare-Earth Doped Ruddlesden−Popper Manganites

Structural and Microhardness Studies of Rare-Earth Doped Ruddlesden−Popper Manganites

We investigate the explicit role of the A-site doping by Pr and Sm on the mechanical and structural features of the lanthanum based double-layered manganites. The polycrystalline samples of the Ruddlesden-Popper (La1-yREy)1.4Ca1.6Mn2O7 phase with RE: Pr and Sm are elaborated by the solid-state synthesis route. Powder X-ray analysis reveal that the samples structure is tetragonal (I4/mmm space group) and the lattice parameters do not change significantly with the rare-earth substitution. However, SEM analyses demonstrate that the substitution with Pr and Sm affects the microstructure, significantly. Whickers micro-hardness measurements are performed on both samples to evaluate several structural parameters such as the stiffness, creep, micro-hardness, etc. We compare and construct the mechanical and microstructural changes due to the Sm and Pr doping with La site. The detailed explanations for the observed mechanical changes by Pr and Sm doping is given.

___

  • [1] F. Ben Jemaa, S. Mahmood, M. Ellouze, E.K. Hlil, F. Halouani, I. Bsoul, M. Awawdeh, “Structural, magnetic and magnetocaloric properties of La0.67Ba0.22Sr0.11Mn1−xFexO3 nanopowders”, Solid State Sciences, vol. 37, pp. 121-130, 2014.
  • [2] P. Ripka and M. Janosek, “Advantages in magnetic field sensors,” IEEE Sensors Journal, vol. 10, no. 6, pp. 1108–1116, 2010.
  • [3] M. A. Mamun, A. Haque, A. Pelton, B. Paul and K. Ghosh, “Structural, electronic, and magnetic analysis and device characterization of ferroelectric-ferromagnetic heterostructure (BZT-BCT/LSMO/LAO),” IEEE Transactions on Magnetics., vol. 54, no. 12, pp. 1-8, 2018.
  • [4] S. N. Ruddlesden and P. Popper, “New compounds of the K2NiF4 type,” Acta. Crystallographica, vol. 10, pp. 538-539, 1957.
  • [5] L. L. Lev, J. Krempaský, U. Staub, V. A. Rogalev, T. Schmitt, M. Shi, P. Blaha, A. S. Mishchenko, A. A. Veligzhanin, Y. V. Zubavichus, M. B. Tsetlin, H. Volfová, J. Braun, J. Minár, and V. N. Strocov, “Fermi Surface of Three-Dimensional La1−xSrxMnO3 Explored by Soft-X-Ray ARPES: Rhombohedral Lattice Distortion and Its Effect on Magnetoresistance,” Physical Review Letters, vol. 114, no. 23, pp. 237601, 2015.
  • [6] R. Chourasia and O. P. Shrivastava, “Crystal structure and impedance study of samarium substituted perovskite: La1−xSmxMnO3 (x = 0.1–0.3),” Solid State Sciences, vol. 14, no. 3, pp. 341-348, 2012.
  • [7] S. Mori, C. H. Chen, and S.-W. Cheong, “Pairing of charge-ordered stripes in (La,Ca)MnO3”, Nature, vol. 392, pp. 473-476, 1998.
  • [8] J.-S. Lee, C.-C. Kao, C. S. Nelson, H. Jang, K.-T. Ko, S. B. Kim, Y. J. Choi, S.-W. Cheong, S. Smadici, P. Abbamonte, and J.-H. Park “Fragile Magnetic Ground State in Half-Doped LaSr2Mn2O7,” Physical Review Letters, vol. 107, no. 3, pp. 037206, 2011.
  • [9] J.F. Mitchell, C.D. Ling, J.E. Millburn, D.N. Argyriou, A. Berger, M. Medarde, “Magnetic phase diagram of layered manganites in the highly doped regime,” Journal of Applied Physics, vol. 89, no. 11, pp. 6618-6620, 2001.
  • [10] J. Q. Li, Y. Matsui, T. Kimura, and Y. Tokura, “Structural properties and charge-ordering transition in LaSr2Mn2O7,” Physical Review B, vol. 57, no. 6, R3205-R3208, 1998.
  • [11] P. D. Battle, D. E. Cox, M. A. Green, J. E. Millburn, L. E. Spring, P. G. Radaelli, M. J. Rosseinsky, and J. F. Vente, “Antiferromagnetism, Ferromagnetism, and Phase Separation in the GMR System Sr2-xLa1+xMn2O7,” Chemistry of Materials, vol. 9, no. 4, pp. 1042-1049, 1997.
  • [12] L. Vasiliu-Doloc, S. Rosenkranz, R. Osborn, S. K. Sinha, J. W. Lynn, J. Mesot, O. H. Seeck, G. Preosti, A. J. Fedro, and J. F. Mitchell, “Charge Melting and Polaron Collapse in La1.2Sr1.8Mn2O7,” Physical Review Letters, vol. 83, no. 21, pp. 4393, 1999.
  • [13] M. Oumezzine, J. S. Amaral, F. J. Mompean, M. G. Hernandez, M. Oumezzine, “Structural, magnetic, magneto-transport properties and Bean-Rodbell model simulation of disorder effects in Cr3+ substituted La0.67Ba0.33MnO3 nanocrystalline synthesized by modified Pechini method,” RSC Advances, vol. 6, pp. 32193–32201, 2016.
  • [14] S. K. Mandal, T. K. Nath, and V. V. Rao, “Effect of nanometric grain size on electronic-transport, magneto-transport and magnetic properties of La0.7Ba0.3MnO3 nanoparticles,” J. Phys.: Condens. Matter, vol. 20, pp. 385203, 2008.
  • [15] Y. S. Reddy, V. P. Kumar, E. Nagabhushanam, P. Kistaiah, and C. V. Reddy, “Electrical, magnetic and elastic properties of La1.2(Sr1−xCax)1.8Mn2O7 (0.0≤x≤0.4),” Journal of Alloys and Compounds, vol. 440, no. 1–2, pp. 6–12, 2007.
  • [16] Y. S. Reddy, M. V. Ramana Reddy, P. Veerasomaiah, C. Vishnuvardhan Reddy, “Elastic properties of double layered manganiteLa1.2Sr1.8−xCaxMn2O7 (x=0–0.4),” Material Science (Poland), vol, 25, no. 3, pp. 619–626, 2007.
  • [17] Y. S. Reddy, P. Kistaiah, C. Vishnuvardhan Reddy, “Elastic properties of double layered manganites R1.2Sr1.8Mn2O7 (R 5 La, Pr, Nd, Sm),” Rare Metals, vol. 33, no. 2, pp. 166–170, 2014.
  • [18] G. Lalitha and P. Venugopal Reddy, “Elastic behavior of neodymium based manganites,” Ultrasonics, vol. 52, pp. 706-711, 2012.
  • [19] C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3 ∕ PMN−PT (001) (A = Sr , Ca ),” Phys. Rev. B, vol. 75, no. 5, pp. 054408, 2007.
  • [20] J. J. U. Buch, G. Lalitha, T. K. Pathak, N. H. Vasoya, V. K. Lakhani, P. V. Reddy, Ravi Kumar and K. B. Modi, “Structural and elastic properties of Ca-substituted LaMnO3 at 300 K,” J. Phys. D: Appl. Phys., vol. 41, no. 2, pp. 025406, 2008.
  • [21] R. Terzioglu, “The structural and mechanical properties of Gd and Nd substituted double layered LaCaMnO7 ceramics,” Journal of Alloys and Compounds, vol. 797, pp. 1173–1180, 2019.
  • [22] V. Petříček, M. Dušek, and L. Palatinus, “Crystallographic Computing System JANA2006: General features,” Zeitschrift für Kristallographie - Crystalline Materials, vol. 229, no. 5, 2014.
  • [23] JCPDS-International Centre for Diffraction Data Task Group on Cell Parameter Refinement,” Powder Diffr., vol. 1, no. 1, pp. 66–76, 1986.
  • [24] De Keiyser, T. H., Langford, J. I., Mittemeijer, and Vogels, A. B. P., “Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening,” J. Appl. Cryst., vol. 15, pp. 308- 314, 1982.
  • [25] P. E. Tomaszewski, “The uncertainty in the grain size calculation from X-ray diffraction data,” Phase Transitions, vol. 86, no. 2–3, pp. 260–266, 2013.
  • [26] O. D. Neikov, Handbook of powders of non-ferrous metals. Oxford, UK; New York, NY: Elsevier, 2005.
  • [27] K. Higashitani, H. Makino, and S. Matsusaka, Powder Technology Handbook, 4th ed. Fourth edition. | Boca Raton, FL: Taylor & Francis Group, LLC, 2020.: CRC Press, 2019.
  • [28] W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res., vol. 19, no. 1, pp. 3–20, 2004.
  • [29] P. S. Phani and W. C. Oliver, “A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum,” Acta Materialia, vol. 111, pp. 31–38, 2016.
  • [30] J. E. Bradby et al., “Indentation-induced damage in GaN epilayers,” Appl. Phys. Lett., vol. 80, no. 3, pp. 383–385, 2002.
  • [31] W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res., vol. 19, no. 1, pp. 3–20, 2004
  • [32] K. Sangwal, “On the reverse indentation size effect and microhardness measurement of solids,” Materials Chemistry and Physics, vol. 63, no. 2, pp. 145–152, 2000.
  • [33] P. Feltham and R. Banerjee, “Theory and application of microindentation in studies of glide and cracking in single crystals of elemental and compound semiconductors,” J Mater Sci, vol. 27, no. 6, pp. 1626–1632, 1992.
  • [34] W. D. Nix and H. Gao, "Indentation size effects in crystalline materials: A law for strain gradient plasticity," Journal of the Mechanics and Physics of Solids, vol. 46, no. 3, pp. 411-425, 1998.
  • [35] G.P. Upit, S.A. Varchenya, “Microhardness of alkali halide crystals,” Physica Status Solidi B, vol. 17, no. 2, pp. 831–835, 1966.
  • [36] ed.) Westbrook J. H. (Jack Hall), ed.) Conrad Hans, and A. S. for Metals, “The Science of Hardness Testing and its Research Applications,” ASME, Metals Park, Ohio: American Society for Metals, 1973.
  • [37] Q. Ma and D. R. Clarke, “Size dependent hardness of silver single crystals,” J. Mater. Res., vol. 10, no. 4, pp. 853–863, 1995.
  • [38] H. Li and R. C. Bradt, “The microhardness indentation load/size effect in rutile and cassiterite single crystals,” Journal of Materials Science, vol. 28, no. 4, pp. 917–926, 1993.
  • [39]K. Sangwal, “Microhardness of as-grown and annealed lead sulphide crystals,” J Mater Sci, vol. 24, no. 3, pp. 1128–1132, 1989.
  • [40] P P. Feltham and R. Banerjee, “Theory and application of microindentation in studies of glide and cracking in single crystals of elemental and compound semiconductors,” J Mater Sci, vol. 27, no. 6, pp. 1626–1632, 1992.
  • [41] M.L. Tarkanian, J.P. Neumann, L. Raymond, Determination of the temperature dependence of {1 0 0} and {1 1 2} slip in tungsten from Knoop hardness measurements, in: J.H. Westbrook, H. Conrad (Eds.), The Science of Hardness Testing and Its Research Applications, American Society for Metals, Metal Park, OH, pp. 187–198, 1973.
  • [42] J. Hay, P. Agee, and E. Herbert, “Continuous Stiffness Measurement During Instrumented Indentation Testing,” Experimental Techniques, vol. 34, no. 3, pp. 86–94, Jan. 2010.
  • [43] K. Zeng and C.-h Chiu, “An analysis of load–penetration curves from instrumented indentation,” Acta Materialia, vol. 49, no. 17, pp. 3539–3551, 2001.
  • [44] W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res., vol. 7, no. 6, pp. 1564–1583, 1992.
  • [45] L. Arda, O. Ozturk, E. Asikuzun, and S. Ataoglu, “Structural and mechanical properties of transition metals doped ZnMgO nanoparticles,” Powder Technology, vol. 235, pp. 479–484, 2013.
  • [46] M. B. Turkoz, Y. Zalaoglu, T. Turgay, O. Ozturk, B. Akkurt, and G. Yildirim, “Evaluation of key mechanical design properties and mechanical characteristic features of advanced Bi-2212 ceramic materials with homovalent Bi/Ga partial replacement: Combination of experimental and theoretical approaches,” Ceramics International, vol. 45, no. 17, pp. 21183–21192, 2019.