Solving Bigeometric Volterra Integral Equations by Using Successive Approximations Method

Solving Bigeometric Volterra Integral Equations by Using Successive Approximations Method

In this study, the successive approximations method has been applied to investigate the solution for the linear bigeometric Volterra integral equations of the second kind in the sense of bigeometric calculus. The conditions to be taken into consideration for the bigeometric continuity and the uniqueness of the solution of linear bigeometric Volterra integral equations of the second kind are researched. Finally, some numerical examples are presented to illustrate successive approximations method.

___

  • Referans1 D. Aniszewska and M. Rybaczuk, “Analysis of the Multiplicative Lorenz System,” Chaos Solitons Fractals, vol. 25, pp. 79–90, 2005.
  • Referans2 K. Boruah and B. Hazarika, “ -Calculus,” TWMS J. Pure Appl. Math., vol. 8, no. 1, pp. 94-105, 2018.
  • Referans3 K. Boruah and B. Hazarika, “Bigeometric Integral Calculus,” TWMS J. Pure Appl. Math., vol. 8, no. 2, pp. 374-385, 2018.
  • Referans4 K. Boruah, B. Hazarika and A. E. Bashirov, “Solvability of Bigeometric Diferrential Equations by Numerical Methods,” Bol. Soc. Parana. Mat., doi: 10.5269/bspm.39444, 2018.
  • Referans5 F. Córdova-Lepe, “The Multiplicative Derivative as a Measure of Elasticity in Economics,” TEMAT-Theaeteto Antheniensi Mathematica, vol. 2, no.3, 2015.
  • Referans6 A.F. Çakmak and F. Başar, “On Line and Double Integrals in the Non-Newtonian Sense,” AIP Conference Proceedings, 1611, pp. 415-423, 2014.
  • Referans7 A.F. Çakmak and F. Başar, “Certain Spaces of Functions over the Field of Non-Newtonian Complex Numbers,” Abstr. Appl. Anal., Article ID 236124, 12 pages, doi:10.1155/2014/236124, 2014.
  • Referans8 C. Duyar and O. Oğur, “A Note on Topology of Non-Newtonian Real Numbers,” IOSR Journal Of Mathematics, vol. 13, no. 6, pp. 11-14, 2017.
  • Referans9 C. Duyar and B. Sağır, “Non-Newtonian Comment of Lebesgue Measure in Real Numbers,” J. Math, Article ID 6507013, 2017.
  • Referans10 M. Erdoğan and C. Duyar, “Non-Newtonian Improper Integrals,” Journal of Science and Arts, vol. 1, no. 42, pp. 49-74, 2018.
  • Referans11 N. Güngör, “Some Geometric of The Non-Newtonian Sequence Spaces ,” Math. Slovaca, vol. 70, no. 3, pp. 689-696, 2020.
  • Referans12 N. Güngör, “ -Volterra Integral Equations and Relationship with -Differential Equations,” GÜFBED, vol.10, no.3, pp. 814-829, 2020.
  • Referans13 M.Grosmann and R. Katz “Non-Newtonian Calculus,” Lee Press, Pigeon Cove Massachussets, 1972.
  • Referans14 M. Grosmann, “An Introduction to Non-Newtonian Calculus,” International Journal of Mathematical Education in Science and Technology, vol. 10, no. 4, pp. 525-528, 1979.
  • Referans15 M. Grosmann, “Bigeometric Calculus: A system with a Scale Free Derivative,” 1st ed., Archimedes Foundation, Rockport Massachussets, 1983.
  • Referans16 U. Kadak and M. Özlük, “Generalized Runge-Kutta Methods with Respect to Non-Newtonian Calculus,” Abstr. Appl. Anal., Article ID 594685, 2014.
  • Referans17 M. Krasnov, K. Kiselev and G. Makarenko, “Problems and Exercises in Integral Equation,” Mır Publishers, Moscow, 1971.
  • Referans18W. V. Lovitt, “Linear Integral Equations,” Dover Publications Inc., New York, 1950.
  • Referans19 M. Rahman, “Integral Equations and Their Applications”(WIT press, Boston, 2007).
  • Referans20 R. K. Saeed and K. A. Berdawood, "Solving Two-dimensional Linear Volterra-Fredholm Integral Equations of the Second Kind by Using Succesive Approximation Method and Method of Succesive Substitutions," ZANCO Journal of Pure and Applied Sciences, vol. 28, no.2, pp. 35-46, 2016.
  • Referans21 B. Sağır and F. Erdoğan, “On the Function Sequences and Series in the Non-Newtonian Calculus,” Journal of Science and Arts, vol. 4, no. 49, pp. 915-936, 2019.
  • Referans22 C. Türkmen and F. Başar, “Some Results on the Sets of Sequences with Geometric Calculus,” Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., vol. 61, no. 2, pp. 17-34, 2012.
  • Referans23 V. Volterra and B. Hostinsky, “Opérations Infinitésimales linéares,” Herman, Paris, 1938.
  • Referans24 A. M. Wazwaz, “Linear and Nonlinear Integral Equations Methods and Applications”, Springer Verlag Berlin Heidelberg, 2011.
Sakarya University Journal of Science-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi
Sayıdaki Diğer Makaleler

An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates

Erdem ELİBOL, Tuna DEMİRCİ

INVESTIGATION OF THE ADSORPTION OF THE POTASSIUM ATOM ONTO C20 FULLERENE SURFACE

Mehmet Dinçer ERBAŞ, Ferhat DEMİRAY

On The Existence Conditions for New Kinds of Solutions to (3+1)-Dimensional mKDV and mBBM Equations

Hami GÜNDOĞDU, Ömer Faruk GÖZÜKIZIL

The Effect of Hydrothermal Aging Time and Temperature on the Structural Properties of KIT-6 Material

Dilşad Dolunay ESLEK KOYUNCU

Determination of Covid-19 Possible Cases by Using Deep Learning Techniques

Çinare OĞUZ, Mete YAĞANOĞLU

Modelling The Effect Size of Microbial Fuel Cells Using Bernstein Polynomial Approach via Iterative Method

Mehmet GÜRCAN, Nurhan HALİSDEMİR, Yunus GÜRAL

Development of a Data Clustering System for 2DOF Robotic Ball Balancer Using Laser Scanning RangeFinder

Gokhan BAYAR

Method Development for the Chromatographic analysis of a Two-Component Tablet Formulation Using Chemometric Optimization Technique

Faysal SELİMOĞLU, Betül SARITAŞ, Erdal DİNÇ

Synthesis and Biological Evaluation of Novel Dihydro [2,3D] Pyridine Substituted Enaminosulfonamide Compounds as Potent Human Erythrocyte Carbonic Anhydrase II (hCAII)

Tuna DEMİRCİ, Oğuzhan ÖZDEMİR, Mustafa Oğuzhan KAYA, Mustafa ARSLAN

Fabrication of Reduced Graphene Oxide Paper Doped with Zinc Oxide Nanoparticles as Flexible Electrode Material

Elif ERÇARIKCI, Murat ALANYALIOĞLU