Farklı oranlarda CrC partikül takviyesi kullanılarak toz metalürjisi yöntemiyle üretilmiş Cu matrisli kompozit malzemelerin mikroyapı ve mekanik özelliklerinin incelenmesi

  Bu çalışmada, toz metalürjisi (T/M) yöntemi kullanılarak farklı oranlarda CrC partikülleri, Cu matrisi içerisinde kullanılarak Cu matrisli kompozit malzeme üretimi amaçlanmıştır. Bu amaçla Saf Cu tozu içerisine CrC partikülleri ağırlıkça %5, %10,  %15 ve %20 olmak üzere farklı oranlarda katılmıştır. Hazırlanan karşımlar 450 MPa basınç altında şekillendirilmiştir. Şekillendirilen parçalar 950 0C’de 60 dakika boyunca sinterlenmiştir. Sinterleme işleminin başarısı yoğunluğun ve SEM görüntülerinin incelenmesi ile değerlendirilmiştir. Üretilen kompozit malzemelerin mikroyapı ve mekanik özellikleri incelenmiştir. Mikroskop incelemeleri taramalı elektron mikroskobu (SEM) kullanılarak yapılmıştır. Yapılan SEM incelenmesinde, eş eksenli tanelerden oluşan Cu matrisi içerisinde CrC fazının dengeli dağıldığı gözlenmiştir. Yapılan sertlik ölçümlerinde, CrC oranı arttıkça buna bağlı olarak sertliğin arttığı gözlenmiştir.

Investigation of microstructure and hardness properties of Cu matrix composite materials produced by powder metallurgy using CrC particle reinforcements at different ratios

In this study, it was aimed to investigate the effect of CrC particles in Cu matrix, Cu matrix composite material production, CrC particles hardness value of Cu matrix composites using powder metallurgy (P / M) method.. For this purpose, CrC particles in pure Cu dust were added at different ratios of 5%, 10%, 15% and 20% by weight. The prepared samples were stirred for 24 hours using a turbula mixer. The prepared mixtures were shaped under a pressure of 450 MPa. The shaped parts were sintered at 950 0C for 60 minutes. The actual and theoretical densities of the sintered samples were determined The success rate of sintering was evaluated by examining the intensity and SEM images. Microstructure and mechanical properties of the produced composite materials were investigated. Microstructure and hardness values of the produced composite materials were investigated. Microscope studies were performed using scanning electron microscopy (SEM). In the SEM study, it was observed that the CrC phase was uniformly distributed in the Cu matrix composed of coaxial grains. In the hardness measurements made, it was observed that as the CrC ratio increased, the hardness increased accordingly.

___

  • [1] S. S. Yılmaz, “Demir Esaslı T/M Parçaların Yüzey Sertleştirme İşlemlerinin Fiziksel ve Mekanik Özelliklerine Etkisi”, Doktora Tezi, Celal Bayar Üniversitesi, Manisa, Türkiye, 2004.
  • [2] A. Lawley, Atomization: The Production Of Metal Powders, United States, Metal Powder Industries, 1992.
  • [3] H. Turan and S. Sarıtaş, “Metal dust production with gas atomization”, 6. International Machine Design and Manufacturing Congress, Ankara, Türkiye, 1994.
  • [4] S. S. Yılmaz, B. S. Ünlü and R.Varol, “ Borlanmış ve bilyalı dövülmüş demir esaslı T/M malzemelerinin aşınma ve mekanik özellikleri”, Makine Teknolojileri Elektronik Dergisi, pp. 7-16, 2008.
  • [5] H. J. Bargel, Werstoffkunde, VDI-Verlag, 1980.
  • [6] K. N. Tandon and R. Z. Tian, “Effect of Pb on the wear behavior of a Cu-Pb alloy”, Scripta Metallurgica et Materialia, 29, 857-861, 1993.
  • [7] M. Barmouz, P. Asadi, M. K. B. Givi and M. Taherishargh, “Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction”, Material Science and Engineering: A, vol. 528, pp. 1740-1749, 2011.
  • [8] M. Barmouz, M.K.B. Givi and J. Seyfi, “On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior”, Materials Characterization, vol. 62, pp. 108-117, 2011.
  • [9] Z. Chen, P. Liu, J. D. Verhoeven and E. D. Gibson, “Sliding wear behavior of deformation-processed Cu-15vol.%Cr in situ composites”, Wear, vol. 195, pp. 214-222, 1996.
  • [10] P.D. Funkenbusch, T. H. Courtney and D.G. Kubisch, “Fabricability of an microstructural development in cold-worked metal matrix composites”, Scripta Metallurgica et Materialia, vol. 18, pp. 1099-1104, 1984.
  • [11] D. Nath, S. K. Biswas and Rohatgi PK. “Wear characteristics and bearing performance of aluminum-mica particulate composite-material”, Wear, vol. 60, pp. 61-73, 1980.
  • [12] N. Saka and D. P. Karalekas, “Friction and wear of particle-reinforced metal ceramic composites”, Proceedings of the International Conference on Wear of Materials, Canada, 1985.
  • [13] M. Muratoğlu and M. Demirel, “Influence of non-standart geometry of plastic gear on sliding velocities”, 5. International Advanced Technologies Symposium, Karabük, Turkey, 2009.
  • [14] A. T. Alpas and J. Zhang, “ Effect of SiC particulate reinforcement on the Dry Sliding Wear of Aluminum Silicon Alloys (A356)”. Wear, vol. 155, pp. 83-104, 1992.
  • [15] R. Chen, A. Iwabuchi, T. Shimizu, H. S. Shin and H. Mifune, “The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminum alloy matrix composites”, Wear, vol. 213, pp. 175-184, 1997.
  • [16] Y. H. Liang, Q. Zhao, Z. H. Zhang, X. J. Li, and L. Q. Ren, “Effect of B4C particle size on the reaction behavior of self-propagation high-temperature synthesis of TiC-TiB2 ceramic/Cu composites from a Cu-Ti-B4C system”, International Journal of Refractory Metals and Hard Materials, vol. 46, pp. 71-79, 2014.
  • [17] A. Yonetken, A. Erol and H. Kaplan, “Microwave sintering and characterization of Cu-Cr-SiC composite materials”, 24th International Conference on Metallurgy and Materials Metal 2015, Brno, Czech Republic, 2015.
  • [18] H. Turhan, T. Yildiz and B. Gulenc, “Microstructure and mechanical properties of Cu/Fe Mnp and Cu /FeCrp matrix composites produced by powder metallurgy”. Fırat University Science and Engineering Magazine, vol.19, pp. 569-574, 2007.
  • [19] W.D. Callister, Materials Science And Engineering: An Introduction, John Wiley & Sons, 2007.
  • [20] A. Bektaşoğlu and T. Savaşkan, “Zn-60Al-(1-5) Cu alaşımlarının kuru sürtünme durumundaki aşınma özelliklerinin incelenmesi”, Mühendis ve Makine, vol. 46, pp. 31-39, 2005.
  • [21] O. Ozgün, Z. Balalan and O. Ekinci “Microstructure and mechanical properties of Cu matrix composites with SiC particle reinforcements at different ratios”, International Material Science and Technology Conference, Nevsehir, Turkey, 2016.