Değiştir&gözle ve artımsal iletkenlik algoritmalarının EN 50530 dinamik verim testine göre performanslarının değerlendirilmesi

Değiştir&gözle (D&G) ve Artımsal iletkenlik algoritmaları maksimum güç noktası izleyici (MGNİ) sistemlerinde yaygın bir şekilde kullanılmaktadır. Bu çalışmada, bu iki algoritma SEPIC (Single Ended Primary Inductance Converter) DA/DA dönüştürücü devresi üzerinde uygulanmıştır. Algoritmaların gerçekleştirilmesi ve diğer tüm denetim için TMS320F28377 DSP (Digital Signal Processor) işlemcisi kullanılmıştır. MGNİ’nin dinamik çevre koşullarındaki (ışınım, kir, sıcaklık gibi) performansı verim bakımından önemlidir. Verim ölçümü için yöntem sağlayan EN 50530 standardı, bu çalışmada her iki MGNİ tekniğinin dinamik performansını değerlendirmek için kullanılmaktadır. Bu standardın test profil eğrileri fotovoltaik (FV) simülatörden elde edilmiştir. MGNİ verim testi, FV simülatör, SEPIC DA/DA dönüştürücü ve DSP'den oluşan dinamik performans test platformu kullanılarak gerçekleştirilmiştir ve deneyler esnasında MGNİ frekansı 100Hz olarak ayarlanmıştır. EN 50530 standardında belirtildiği üzere, ışınım değişimi 100-1000W/m2 arasında, ışınım değişim eğiminin ise 0,5-100W/m2/s arasında değerler almaktadır. Elde edilen sonuçlar, tasarlanan sistem ile her iki algoritma, yukarıda değinilen ışınım değişimlerine hızlı cevap verebilmiş ve ortalama verimlilikleri % 99'un üzerinde elde edilmiştir. Ayrıca her iki algoritmanın ışınım değişimlerini izleyebilme performansı ve verimlerinin birbirine çok yakın olduğu gösterilmiştir.

Performance evaluation of the perturb & observe and incremental conductance algorithms according to the EN 50530 dynamic efficiency test

The perturb & observe (P&O) and incremental conductance algorithms, which are widely used in maximum power point tracker systems. In this study, A SEPIC (single-ended primary inductance converter) DC/DC converter is designed for maximum power point tracker, and both algorithms are implemented on the SEPIC converter by using DSP. The performance of maximum power point tracker (MPPT) in PV system under dynamic environmental conditions (such as irradiation, dirt, temperature) is very important in the point of its efficiency. EN 50530 standard, which is provides a procedure for the measurement of the efficiency, is used to evaluate the dynamic performance of the both MPPT algorithms in this paper. The experiments are conducted using the dynamic performance test platform that consists of a PV array simulator, SEPIC DC/DC converter and DSP. The results show that efficiencies and performances of the both MPPT algorithms are very close to each other. The obtained results show that both algorithms have fast dynamic response and the average efficiencies are over 99% with the designed system at 100Hz of MPPT frequencies for over all slopes and irradiance in the range from 0.5 to 100 W/m2/s and 100 W/m2- 1000W/m2 as defined by EN 50530 standard.

___

  • [1] V. Eng and C. Bunlaksananusorn, “Modeling of a SEPIC converter operating in continuous conduction mode,” in Proc. 6th ECTI-CON, pp. 136–139, May 2009.
  • [2] S. J. Chiang and H. J. Shieh, “Modeling and control of PV charger system with SEPIC converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009.
  • [3] H.S. Chung et al., “Novel Maximum Power Point Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter”, IEEE Trans. Power Electron., vol. 18, no. 3, pp. 717–724, May. 2003.
  • [4] A.E. Khateb et al., “Maximum power point tracking of single-ended primary-inductor converter employing a novel optimisation technique for proportional-integral derivative controller”, IET Power Electron., Vol. 6, Iss. 6, pp. 1111–1121, 2013.
  • [5] E.Mamarelis et al., “Design of a Sliding-Mode-Controlled SEPIC for PV MPPT Applications”, IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3387–3398, Jul. 2014.
  • [6] M. Killi and S. Samanta, “An Adaptive Voltage-Sensor-Based MPPT for Photovoltaic Systems With SEPIC Converter Including Steady-State and Drift Analysis”, IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7609–7619, Dec. 2015.
  • [7] M. Mahdavi and H. Farzanehfard, “Bridgeless SEPIC PFC Rectifier With Reduced Components and Conduction Losses”, IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4153–4160, Sept. 2011.
  • [8] H. Ma et al., “A Novel Valley-Fill SEPIC-derived Power Supply Without Electrolytic Capacitors for LED Lighting Application”, IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3057–3071, Jun. 2012.
  • [9] H.J. Chiu et al., “A High Efficiency Dimmable LED Driver for Low-Power Lighting Applications”, IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 735–743, Feb. 2010.
  • [10] Sera, D., Mathe, L., Kerekes, T., Spataru, S. V., & Teodorescu, R. (2013). On the Perturb-and-Observe and Incremental Conductance MPPT Methods for PV Systems. IEEE Journal of Photovoltaics, 3(3), 1070–1078. https://doi.org/10.1109/JPHOTOV.2013.2261118.
  • [11] Ahmed, J., Ahmed, J., Member, S., & Salam, Z. (2016). A Modified P & O Maximum Power Point Tracking Method with Reduced Steady State Oscillation and Improved Tracking Efficiency. IEEE Transactions on Sustainable Energy, 7(October), 1506–1515. https://doi.org/10.1109/TSTE.2016.2568043.
  • [12] Andrejasic, T., Jankoves, M., & Topic, M. (2011). Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic test procedure. IET Renewable Power Generation, (January), 281–286. https://doi.org/10.1049/iet-rpg.2010.0175
  • [13] Ishaque, K., & Salam, Z. (2014). Dynamic Efficiency of Direct Control Based Maximum Power Point Trackers. In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation (pp. 429–434). IEEE. https://doi.org/10.1109/ISMS.2014.79
  • [14] Bendib, B., Belmili, H., & Krim, F. (2015). A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renewable and Sustainable Energy Reviews, 45, 637–648. https://doi.org/10.1016/j.rser.2015.02.009
  • [15] Abdelsalam, A. K., Massoud, A. M., Ahmed, S., & Enjeti, P. N. (2011). High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids. IEEE Transactions on Power Electronics, 26(4), 1010–1021.
  • [16] Ishaque K., Salam Z., A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition, Renew. Sustain. Energy Rev., 2012, 19, 475-488.
  • [17] Saravanan, S., & Ramesh Babu, N. (2016). Maximum power point tracking algorithms for photovoltaic system – A review. Renewable and Sustainable Energy Reviews, 57, 192–204. https://doi.org/10.1016/j.rser.2015.12.105.
Sakarya University Journal of Science-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi