Vücut Alan Ağları için Enerji Hasadı Ünitesi Tasarımı

Vücut Alan Ağları, uzaktan sağlık izleme ve nesnelerin interneti konularının temel bir parçası olarak günümüz bilim dünyasında yerini almıştır. Vücut üzerinde, çevresinde ya da içinde yeralabilen algılayıcı düğümlerin ölçtüğü sinyaller bu ağa sahip bireylerin sağlığı hakkında bilgileri aktarmaktadır. Vücut Alan Ağları’nın diğer ağ tiplerine benzer problemleri bulunmaktadır ve bu problemlerin başında enerji tüketimi gelmektedir. Vücut Alan Ağları genellikle kablosuz iletişim yapmakta ve kişinin hareket halindeyken de düğümlerin ölçüm yapması için enerji birimlerine (pil, akü vb.) ihtiyaç duymaktadır. Bu sebeple enerji ünitesinin her zaman değiştirilebilmesi mümkün olmamaktadır. Bu çalışmada Vücut Alan Ağı’nın enerji problemini ortadan kaldırmak için enerji hasadı ünitesi geliştirilmiştir. Piezoelektrik malzeme ve peltierden oluşan bu ünite Vücut Alan Ağı’nın enerji ihtiyacını karşılamaktadır.

Energy Harvesting Unit Design for Body Area Networks

Body Area Networks has taken its place in today's scientific world as a fundamental part of the issues of remote health monitoring and Internet of Things. The signals measured by the sensor nodes in or around the body are transmited the information about the health of the individual to the experts in remote. Body Area Networks have problems similar to other types of networks, and energy consumption is one of the main problems. Body Area Networks generally involve wireless communication and require the energy units (batteries, acumulator, and etc.) to measure of nodes while the person is on the move. For this reason, it is not possible to change the energy unit at any time. In order to eliminate the energy problem of the Body Area Network, the energy harvesting unit is developed in this study. This unit consisting of piezoelectric material and peltier meets the energy needs of the Body Area Network.

___

[1] A. Chen, “Thermal energy harvesting with thermoelectrics for self-powered sensors: with applications to ımplantable medical devices, body sensor networks and aging in place,” Doktora Tezi, UC Berkeley, 2011.

[2] E. W. Ford, N. Menachemi, and M. T. Phillips, “Predicting the adoption of electronic health records by physicians: when will health care be paperless?,” Journal of the American Medical Informatics Association, cilt. 13, no. 1, pp. 106–112, 2006.

[3] M. A. Wood and K. A. Ellenbogen, “Cardiac pacemakers from the patient's perspective,” Circulation, cilt. 105, pp. 2136–2138, 2002.

[4] A. Liberale, E. Dallago and A. L. Barnabei, “Energy harvesting system for wireless body sensor nodes,” 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, pp. 416-419, 2014.

[5] Z. Liu, Z. Zhong and Y. Guo, “High-efficiency triple-band ambient RF energy harvesting for wireless body sensor network,” 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), pp. 1-3, London, 2014.

[6] R. K. Tallos, Z. Wang and J. L. Volakis, “Wi-Fi energy harvesting system using body-worn antennas,” 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, pp. 1405-1406, 2014.

[7] R. Lockhart, P. Janphuang, D. Briand and N. F. de Rooij, “A wearable system of micromachined piezoelectric cantilevers coupled to a rotational oscillating mass for on-body energy harvesting,” 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, pp. 370-373, 2014.

[8] G. Wu and X. Yu, “System design on thermoelectic energy harvesting from body heat,” 2013 39th Annual Northeast Bioengineering Conference, Syracuse, NY, 157-158, 2013.

[9] G. De Pasquale and A. Somà, “Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors,” 2013 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Barcelona, pp.1-6, 2013.

[10] R. Kappel, W. Pachler, M. Auer, W. Pribyl, G. Hofer and G. Holweg, “Using thermoelectric energy harvesting to power a self-sustaining temperature sensor in body area networks,” 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, pp. 787-792, 2013.

[11] N. Ben Amor, O. Kanoun, A. Lay-Ekuakille, G. Specchia, G. Vendramin and A. Trotta, “Energy harvesting from human body for biomedical autonomous systems,” SENSORS, 2008 IEEE, Lecce, pp. 678-680, 2008.

[12] S. Kosunalp and A. Cihan, “Harvesting solar energy for limited-energy problem in wireless sensor networks,” 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, pp. 1-4, 2017.

[13] M. Saida, G. Zaibi, M. Samet and A. Kachouri, “Improvement of energy harvested from the heat of the human body,” 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, pp. 132-137, 2016.

[14] A. Ghosh, Meenakshi, S. Khalid and V. P. Harigovindan, “Performance analysis of wireless body area network with thermal energy harvesting,” 2015 Global Conference on Communication Technologies (GCCT), Thuckalay, pp. 916-920, 2015.

[15] A. Proto, D. Bibbo, M. Cerny, D. Vala, V. Kasik, L. Peter, and M. Penhaker, “Thermal energy harvesting on the bodily surfaces of arms and legs through a wearable thermo-electric generator,” Sensors, 18(6), 1927, 2018.

[16] P. Woias, “Thermoelectric Energy Harvesting from small and variable Temperature Gradients,” Tagungsband, pp. 83-88, 2015.

[17] “MySignals Web Sitesi [Online]. Available: http://www.my-signals.com/. [Accessed Jan 10, 2019].