Kurşun Asit Aküler İçin Kalıcı Sülfatlaşmayı Ortadan Kaldıran Yenilikçi Bir Akü Koruma Cihazı Tasarımı

Akülerde çalışma kalitesini belirleyen en temel ölçüt kutuplar arasındaki gerilim seviyesinin kararlılığı olup bu kararlılığı bozan temel sebep akü elektrolizinde meydana gelen "sülfatlaşma" olayıdır. Sülfatlaşma aküde plakalar arasında kısa devre oluşumu gibi akü açısından kritik arızalara sebebiyet verebilecek ve akünün servis süresinden daha kısa sürede değiştirilmesi ile sonuçlanacaktır. Bu çalışmada akülerde sülfatlaşma probleminin akü vazife görürken ve beklerken elektrokimyasal tepkime kontrolü yapılarak azaltılması veya kurşun asit akülerde kalıcı sülfatlaşmanın oluşumunun engellenmesi maksadıyla akü kutuplarından genliği ve frekansı ayarlanabilen sinyaller ile akünün uyarılarak elektrokimyasal tepkime kontrolü sağlayabilen bir akü koruma cihazı tasarımı yapılmıştır.

An Innovative Battery Protection Device Design That Eliminates Permanent Sulphation for Lead Acid Batteries

The most important criterion that determines the working quality of the batteries is the stability of the voltage level between the poles and the main reason for this stability is the sülfat sulphation ol phenomenon that occurs in battery electrolysis. Sulfatization may cause battery-critical failures such as short circuit between the plates in the battery and will result in the battery being replaced in less time than service time. In this study, a battery protection device is designed which can provide electrochemical reaction control by stimulating the battery with signals that can be adjusted with amplitude and frequency from the battery poles in order to reduce the sulfation problem of the batteries by performing electrochemical reaction control while waiting and waiting for the battery or to prevent the formation of permanent sulphation in lead acid batteries.

___

[1] J. Jung, L. Zhang, J. Zhang, Lead-acid Battery Technologies: Fundamentals, Materials, and Applications, CRC Press, 2015.

[2] M. Barak, Electrochemical Power Sources, Peter Peregrinus, England, 1980.

[3] Z. Zhuo et al.,"Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site." Journal of Hazardous Materials, vol.288, pp. 140-146, 2015.

[4] Z. M. Salameh, M. A. Casacca, W. A. Lynch, "A mathematical model for lead-acid batteries,"IEEE Transactions on Energy Conversion, vol. 7(1), pp. 93-98, 1992.

[5] R. J. Brodd, K. R. Bullock, R. A. Leising, R. L. Middaugh, J. R. Miller, E. Takeuchi, "Batteries from 1977 to 2002," Journal of the Electrochemical Society, vol.151(3), 2004.

[6] C. J. Rydh, "Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage,", Journal of Power Sources, vol. 80(1), pp. 21-29, 1999.

[7] D. H. Doughty, P. C. Butler, A. A. Akhil, N. H. Clark, and J. D. Boyes, "Batteries for largescale stationary electrical energy storage," The Electrochemical Society Interface, vol. 19(3), pp. 49– 53, 2010.

[8] D. W. G. Lambert et al., “Advances in gelled electrolyte technology for valve- regulated leadacid batteries,” Journal of Power Sources, vol. 107, 173–179, 2002.

[9] R. C. Weast, CRC Handbook of Chemistry and Physics. CRC, Boca Raton-FL, pp. 254, 1978.

[10] K. R. Bullock, "The electromotive force of the lead acid cell and its half-cell potentials", Journal of Power Sources, vol. 35(3), pp.197-223, 1991.

[11] V. Danel, V. Plichon. "Study of Pb (II) in various H2O-H2SO4 mixtures by differential pulse polarography: solubility of lead sulphate, diffusion coefficient of Pb (II) and half-wave potential of Pb (Hg)/Pb (II)," Electrochimica Acta, vol. 27(6), pp. 771-774, 1982.

[12] D. N. Craig, and N. Vinal. "Solubility of lead sulfate in solutions of sulfuric acid, determined by dithizone with a photronic cell." J. Res. Natl. Bur. Stand, vol.22, pp. 55-70, 1939.

[13] D. Polov, "Lead-Acid Batteries, Technology and Operation", KLT-13, Hangzhou, China, 2000,

[14] Z. Li, Lecture Course on VRLA, China, 2003.