Yüzey modifiye edilmiş farklı jenerasyon Jeffamine® D230 ve TREN-çekirdekli PAMAM dendrimerlerin kandesartan sileksetilin sulu çözünürlüğü üzerine etkisinin değerlendirilmesi

Dendrimerler üç boyutlu, çok dallı, monodispers, yıldız şeklinde makromoleküllerdir. Dendrimerlerin fiziksel ve kimyasal özellikleri çekirdek, tekrar eden dallar ve yüzey fonksiyonel grupları gibi moleküler yapı elemanları tarafından belirlenmektedir. Bu yapı elemanlarının türü, dendrimerlerin moleküler kapsülleme ve çözünürlük gibi özelliklerinde belirleyici olmaktadır. Bu çalışmada, yeni nesil Jeffamin® D230 (D) ve TREN (T) çekirdekli poli(amido amin) PAMAM dendrimerlerin, jenerasyon büyüklüğü (D2- D4 ve T2-T4), konsantrasyonu (0-1.0 mM) ve yüzey fonksiyonel gruplarının (NH2, COOH, TRIS), kandesartan sileksetil (CC)’in sudaki çözünürlüğüne olan etkisi araştırıldı. CC’nin (sudaki çözünürlük = 0.0048 mg/mL) gözlemlenen sudaki çözünürlük artışı, D4.COOH (5.25 mg/mL)> T4.COOH (4.77 mg/mL)> D4.TRIS (0.44 mg/mL)> T4.TRIS (0.32 mg/mL)> D4.NH2 (0.11 mg/mL)> T4.NH2 (0.08 mg/mL) sırasındadır.

Evaluation of the effect of surface modified different generation Jeffamine® D230 and TREN-cored PAMAM dendrimers on the aqueous solubility of candesartan cilexetil

Dendrimers are three-dimensional, hyperbranched, monodisperse, and starburst macromolecules. The physical and chemical properties of dendrimers are attributed by their molecular construction units; namely, core, repetitive branching units, and terminal functional groups. The type of these units has also a determinant effect on their molecular encapsulation and solubility properties. In this study, the effect of generation size (D2-D4 and T2-T4), concentration (0-1.0 mM), and surface functional group (NH2, COOH, TRIS) of new-generation jeffamine® D230 (D) and TREN (T) core PAMAMs on the aqueous solubility of candesartan cilexetil (CC) was investigated.The observed solubility enhancement of CC (solubility in water = 0.0048 mg/mL) was in the order of D4.COOH (5.25 mg/mL)> T4.COOH (4.77 mg/mL)> D4.TRIS (0.44 mg/mL)> T4.TRIS (0.32 mg/mL)> D4.NH2 (0.11 mg/mL)> T4.NH2 (0.08 mg/mL).

___

  • A.E. Beezer, A.S.H. King, I.K. Martin, J.C. Mitchel, L.J. Twyman, C.F. Wain, ''Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives'', Tetrahedron, vol. 59, no. 22, pp. 3873- 3880, 2003.
  • M. Yokoyama, ''Novel passive targetable drug delivery with polymeric micelles'', Biorelated polymers and gels : controlled release and applications in biomedical engineering, pp 193-199, 1998.
  • P. Couvreur, F. Puisieux, ''Nano- and microparticles for the delivery of polypeptides and proteins'', Advanced Drug Delivery Reviews, vol. 10, no. 2, pp. 141- 162, 1993.
  • K. Akiyoshi, S. Kobayashi, S. Shichibe, D. Mix, M. Baudys, S. Wan Kim, J. Sunamoto, ''Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization of insulin'', Journal of Controlled Release, vol. 54, no. 3, pp. 313- 320, 1998.
  • E. Allemann, R. Gurny, E. Doelker, ''Drugloaded nanoparticles - Preparation methods and drug targeting issues'', European Journal of Pharmaceutics and Biopharmaceutics, vol. 39, no. 5, pp. 173- 191, 1993.
  • R. Duncan, ''Drug-polymer conjugates: potential for improved chemotherapy'', Anti-cancer drugs, vol. 3, no. 3, pp. 175- 210, 1992.
  • B. Felice, M.P. Prabhakaran, A.P. Rodríguez, S. Ramakrishna, ''Drug delivery vehicles on a nano-engineering perspective'', Materials Science and Engineering: C, vol. 41, no., pp. 178-195, 2014.
  • T.F. Vandamme, L. Brobeck, ''Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide'', Journal of controlled release, vol. 102, no. 1, pp. 23- 38, 2005.
  • M.E. Fox, F.C. Szoka, J.M.J. Fréchet, ''Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture'', Accounts of Chemical Research, vol. 42, no. 8, pp. 1141-1151, 2009.
  • L. Jia, J.-P. Xu, H. Wang, J. Ji, ''Polyamidoamine dendrimers surfaceengineered with biomimetic phosphorylcholine as potential drug delivery carriers'', Colloids and Surfaces BBiointerfaces, vol. 84, no. 1, pp. 49-54, 2011.
  • P. Kesharwani, K. Jain, N.K. Jain, ''Dendrimer as nanocarrier for drug delivery'', Progress in Polymer Science, vol. 39, no. 2, pp. 268-307, 2014.
  • C. Dufès, I.F. Uchegbu, A.G. Schätzlein, ''Dendrimers in gene delivery'', Advanced drug delivery reviews, vol. 57, no. 15, pp. 2177-2202, 2005.
  • G. Dang, Y. Shi, Z. Fu, W. Yang, ''Polymer nanoparticles with dendrimer-Ag shell and its application in catalysis'', Particuology, vol. 11, no. 3, pp. 346-352, 2013.
  • M. Tulu, N.M. Aghatabay, M. Senel, C. Dizman, T. Parali, B. Dulger, ''Synthesis, characterization and antimicrobial activity of water soluble dendritic macromolecules'', European Journal of Medicinal Chemistry, vol. 44, no. 3, pp. 1093-1099, 2009.
  • K. Öztürk, G. Esendağlı, M.U. Gürbüz, M. Tülü, S. Çalış, ''Effective targeting of gemcitabine to pancreatic cancer through PEG-cored Flt-1 antibody-conjugated dendrimers'', International Journal of Pharmaceutics, vol. 517, no. 1, pp. 157- 167, 2017.
  • A.S. Ertürk, M.U. Gürbüz, M. Tülü, ''The effect of PAMAM dendrimer concentration, generation size and surface functional group on the aqueous solubility of candesartan cilexetil'', Pharmaceutical development and technology, vol. 22, no. 1, pp. 111-121, 2017.
  • M.U. Gürbüz, A.S. Ertürk, M. Tülü, ''Synthesis of surface-modified TRENcored PAMAM dendrimers and their effects on the solubility of sulfamethoxazole (SMZ) as an analog antibiotic drug'', Pharmaceutical Development and Technology, vol., no., pp. 1-12, 2016.
  • A.S. Ertürk, M.U. Gürbüz, M. Tülü, ''Newgeneration Jeffamine® D230 core amine, TRIS and carboxyl-terminated PAMAM dendrimers: Synthesis, characterization and the solubility application for a model NSAID drug Ibuprofen'', Marmara Pharmaceutical Journal, vol. 21, no. 2, pp. 385-399, 2017.
  • O.M. Milhem, C. Myles, N.B. McKeown, D. Attwood, A. D’Emanuele, ''Polyamidoamine Starburst® dendrimers as solubility enhancers'', International Journal of Pharmaceutics, vol. 197, no. 1–2, pp. 239-241, 2000.
  • A. Abderrezak, P. Bourassa, J.S. Mandeville, R. Sedaghat-Herati, H.A. Tajmir-Riahi, ''Dendrimers bind antioxidant polyphenols and cisplatin drug'', PloS one, vol. 7, no. 3, pp. e33102, 2012.
  • C. Yiyun, X. Tongwen, ''Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers'', European Journal of Medicinal Chemistry, vol. 40, no. 11, pp. 1188-1192, 2005.
  • B. Devarakonda, R.A. Hill, W. Liebenberg, M. Brits, M.M. de Villiers, ''Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins'', International journal of pharmaceutics, vol. 304, no. 1, pp. 193-209, 2005.
  • M. Ma, Y. Cheng, Z. Xu, P. Xu, H. Qu, Y. Fang, T. Xu, L. Wen, ''Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug'', European Journal of Medicinal Chemistry, vol. 42, no. 1, pp. 93-98, 2007.
  • K. Öztürk, A.S. Ertürk, C. Sarısözen, M. Tulu, S. Çalış, ''Cytotoxicity and in vitro characterization studies of synthesized Jeffamine-cored PAMAM dendrimers'', Journal of microencapsulation, vol. 31, no. 2, pp. 127-136, 2014.
  • R. Yin, Y. Zhu, D. Tomalia, H. Ibuki, ''Architectural copolymers: rod-shaped, cylindrical dendrimers'', Journal of the American Chemical Society, vol. 120, no. 11, pp. 2678-2679, 1998.
  • A.S. Chauhan, N.K. Jain, P.V. Diwan, A.J. Khopade, ''Solubility enhancement of indomethacin with poly (amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats'', Journal of drug targeting, vol. 12, no. 9-10, pp. 575-583, 2004.
  • M.-C. Popescu, D. Filip, C. Vasile, C. Cruz, J. Rueff, M. Marcos, J. Serrano, G. Singurel, ''Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer'', The Journal of Physical Chemistry B, vol. 110, no. 29, pp. 14198-14211, 2006.
  • P. Singh, U. Gupta, A. Asthana, N.K. Jain, ''Folate and folate− PEG− PAMAM Dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice'', Bioconjugate chemistry, vol. 19, no. 11, pp. 2239-2252, 2008.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü