Theoretical Investigation Of Coverage Effects Of CO Adsorption On Cu(100) Surface

This work investigates the CO adsorption on the metallic Cu(100) surface using periodic DFT computations. CO adsorption was studied at varying coverages from 1/16 ML to 1/1 ML for a combination of adsorption positions (4-fold, bridge and top). The results showed that adsorption energies are coverage dependent, however, not enough to identify the adsorption site and coverage. However, C-O stretching frequencies are almost unique for studied coverage and adsorption positions. CO adsorption energy changes between -250 kJ/mol to +21 kJ/mol; similarly, the vibrations’ range in the 1702 cm-1 to 2110 cm-1 interval, within the studied coverage and adsorption positions. Nevertheless, under the saturation coverage (θCO ≈ 0.55ML) the preferable adsorption site is the on-top position identified with a C-O stretching frequency around ~2100 cm-1 and with ~117 kJ/mol adsorption energy.

___

[1] B. Eren et al., "Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption," Science, vol. 351, no. 6272, pp. 475-478, 2016, doi: 10.1126/science.aad8868.

[2] A. M. Bradshaw and J. Pritchard, "Infrared Spectra of Carbon Monoxide Chemisorbed on Metal Films: A Comparative Study of Copper, Silver, Gold, Iron, Cobalt and Nickel," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 316, no. 1525, pp. 169-183, 1970. [Online]. Available: www.jstor.org/stable/77710.

[3] Q. Jiang, H. M. Lu, and M. Zhao, "Modelling of surface energies of elemental crystals," Journal of Physics: Condensed Matter, vol. 16, no. 4, pp. 521-530, 2004/01/16 2004, doi: 10.1088/0953- 8984/16/4/001.

[4] X. Liu et al., "pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper," Nature Communications, vol. 10, no. 1, p. 32, 2019/01/03 2019, doi: 10.1038/s41467- 018-07970-9.

[5] E. Borguet and H. L. Dai, "Site‐specific properties and dynamical dipole coupling of CO molecules adsorbed on a vicinal Cu(100) surface," The Journal of Chemical Physics, vol. 101, no. 10, pp. 9080-9095, 1994, doi: 10.1063/1.468038.

[6] H. Yamashita, M. Matsuoka, K. Tsuji, Y. Shioya, M. Anpo, and M. Che, "In-Situ XAFS, Photoluminescence, and IR Investigations of Copper Ions Included within Various Kinds of Zeolites. Structure of Cu(I) Ions and Their Interaction with CO Molecules," The Journal of Physical Chemistry, vol. 100, no. 1, pp. 397-402, 1996/01/01 1996, doi: 10.1021/jp952666z.

[7] B. Ipek et al., "Formation of [Cu2O2]2+ and [Cu2O]2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39," ACS Catalysis, vol. 7, no. 7, pp. 4291-4303, 2017/07/07 2017, doi: 10.1021/acscatal.6b03005.

[8] X. Liu, J. Xiao, H. Peng, X. Hong, K. Chan, and J. K. Nørskov, "Understanding trends in electrochemical carbon dioxide reduction rates," Nature Communications, vol. 8, no. 1, p. 15438, 2017/05/22 2017, doi: 10.1038/ncomms15438.

[9] R. W. Joyner, C. S. McKee, and M. W. Roberts, "The adsorption of carbon monoxide on Cu(001): LEED and Auger emission studies," Surface Science, vol. 26, no. 1, pp. 303-309, 1971/06/01/ 1971, doi: https://doi.org/10.1016/0039- 6028(71)90129-4.

[10] S. Andersson, "Vibrational excitations and structure of CO chemisorbed on Cu(100)," Surface Science, vol. 89, no. 1, pp. 477-485, 1979/01/01/ 1979, doi: https://doi.org/10.1016/0039- 6028(79)90632-0.

[11] S. Andersson and J. B. Pendry, "Structure of CO Adsorbed on Cu(100) and Ni(100)," Physical Review Letters, vol. 43, no. 5, pp. 363-366, 07/30/ 1979, doi: 10.1103/PhysRevLett.43.363.

[12] A. O. Elnabawy, J. Schumann, P. Bothra, A. Cao, and J. K. Nørskov, "The Challenge of CO Hydrogenation to Methanol: Fundamental Limitations Imposed by Linear Scaling Relations," Topics in Catalysis, vol. 63, no. 7, pp. 635-648, 2020/08/01 2020, doi: 10.1007/s11244- 020-01283-2.

[13] B. Eren, Z. Liu, D. Stacchiola, G. A. Somorjai, and M. Salmeron, "Structural Changes of Cu(110) and Cu(110)-(2 × 1)-O Surfaces under Carbon Monoxide in the Torr Pressure Range Studied with Scanning Tunneling Microscopy and Infrared Reflection Absorption Spectroscopy," The Journal of Physical Chemistry C, vol. 120, no. 15, pp. 8227-8231, 2016/04/21 2016, doi: 10.1021/acs.jpcc.6b02143.

[14] F. H. P. M. Habraken, C. M. A. M. Mesters, and G. A. Bootsma, "The adsorption and incorporation of oxygen on Cu(100) and its reaction with carbon monoxide; comparison with Cu(111) and Cu(110)," Surface Science, vol. 97, no. 1, pp. 264-282, 1980/07/01/ 1980, doi: https://doi.org/10.1016/0039- 6028(80)90118-1.

[15] K. Hermann, P. S. Bagus, and C. J. Nelin, "Size dependence of surface cluster models: CO adsorbed on Cu(100)," Physical Review B, vol. 35, no. 18, pp. 9467-9473, 06/15/ 1987, doi: 10.1103/PhysRevB.35.9467.

[16] B. N. J. Persson and M. Persson, "Vibrational lifetime for CO adsorbed on Cu(100)," Solid State Communications, vol. 36, no. 2, pp. 175-179, 1980/10/01/ 1980, doi: https://doi.org/10.1016/0038- 1098(80)90677-8.

[17] J. Pritchard, "On the structure of CO adlayers on Cu(100) and Cu(111)," Surface Science, vol. 79, no. 1, pp. 231-244, 1979/01/01/ 1979, doi: https://doi.org/10.1016/0039- 6028(79)90039-6.

[18] M. Roiaz, L. Falivene, C. Rameshan, L. Cavallo, S. M. Kozlov, and G. Rupprechter, "Roughening of Copper (100) at Elevated CO Pressure: Cu Adatom and Cluster Formation Enable CO Dissociation," The Journal of Physical Chemistry C, vol. 123, no. 13, pp. 8112-8121, 2019/04/04 2019, doi: 10.1021/acs.jpcc.8b07668.

[19] R. Ryberg, "Carbon monoxide adsorbed on Cu(100) Studied by infrared spectroscopy," Surface Science, vol. 114, no. 2, pp. 627- 641, 1982/02/01/ 1982, doi: https://doi.org/10.1016/0039- 6028(82)90710-5.

[20] R. B. Sandberg, J. H. Montoya, K. Chan, and J. K. Nørskov, "CO-CO coupling on Cu facets: Coverage, strain and field effects," Surface Science, vol. 654, pp. 56-62, 2016/12/01/ 2016, doi: https://doi.org/10.1016/j.susc.2016.08.006.

[21] A. Sandell, P. Bennich, A. Nilsson, B. Hernnäs, O. Björneholm, and N. Mårtensson, "Chemisorption of CO on Cu(100), Ag(110) and Au(110)," Surface Science, vol. 310, no. 1, pp. 16-26, 1994/05/01/ 1994, doi: https://doi.org/10.1016/0039- 6028(94)91366-8.

[22] C. Somerton, C. F. McConville, D. P. Woodruff, D. E. Grider, and N. V. Richardson, "Valence band photoemission study of the coadsorption of CO and K on Cu{100}," Surface Science, vol. 138, no. 1, pp. 31-39, 1984/03/01/ 1984, doi: https://doi.org/10.1016/0039- 6028(84)90493-X.

[23] J. C. Tracy, "Structural Influences on Adsorption Energy. III. CO on Cu(100)," The Journal of Chemical Physics, vol. 56, no. 6, pp. 2748-2754, 1972, doi: 10.1063/1.1677603.

[24] C. M. Truong, J. Rodriguez, and D. W. Goodman, "CO adsorption isotherms on Cu(100) at elevated pressures and temperatures using infrared reflection absorption spectroscopy," Surface Science, vol. 271, no. 3, pp. L385-L391, 1992/01/01/ 1992, doi: https://doi.org/10.1016/0039- 6028(92)90896-E.

[25] S. Vollmer, G. Witte, and C. Wöll, "Determination of Site Specific Adsorption Energies of CO on Copper," Catalysis Letters, vol. 77, no. 1, pp. 97-101, 2001/11/01 2001, doi: 10.1023/A:1012755616064.

[26] B. M. W. Trapnell and C. N. Hinshelwood, "The activities of evaporated metal films in gas chemisorption," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 218, no. 1135, pp. 566-577, 1953, doi: doi:10.1098/rspa.1953.0125.

[27] R. M. Dell, F. S. Stone, and P. F. Tiley, "The adsorption of oxygen and other gases on copper," Transactions of the Faraday Society, 10.1039/TF9534900195 vol. 49, no. 0, pp. 195-201, 1953, doi: 10.1039/TF9534900195.

[28] R. P. Eischens and W. A. Pliskin, "The Infrared Spectra of Adsorbed Molecules," in Advances in Catalysis, vol. 10, D. D. Eley, W. G. Frankenburg, V. I. Komarewsky, and P. B. Weisz Eds.: Academic Press, 1958, pp. 1-56.

[29] A. W. Smith and J. M. Quets, "Adsorption of carbon monoxide on copper: Infrared absorption spectra and thermodesorption," Journal of Catalysis, vol. 4, no. 2, pp. 163- 171, 1965/04/01/ 1965, doi: https://doi.org/10.1016/0021- 9517(65)90007-2.

[30] A. M. Bradshaw, J. Pritchard, and M. L. Sims, "Reflection spectroscopy of chemisorbed carbon monoxide under ultrahigh vacuum conditions," Chemical Communications (London), 10.1039/C19680001519 no. 23, pp. 1519- 1520, 1968, doi: 10.1039/C19680001519.

[31] J. Pritchard, "Surface-potential study of the chemisorption of hydrogen and carbon monoxide on evaporated copper and gold films," Transactions of the Faraday Society, 10.1039/TF9635900437 vol. 59, no. 0, pp. 437-452, 1963, doi: 10.1039/TF9635900437.

[32] T. Wadayama, H. Yoshida, S. Oda, and N. Todoroki, "Infrared Reflection Absorption Study for Carbon Monoxide Adsorption on Chromium Deposited Cu(100) Surfaces," MATERIALS TRANSACTIONS, vol. 50, no. 4, pp. 819-824, 2009, doi: 10.2320/matertrans.MRA2008442.

[33] P. Giannozzi et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, 2009/09/01 2009, doi: 10.1088/0953- 8984/21/39/395502.

[34] W. P. Davey, "Precision Measurements of the Lattice Constants of Twelve Common Metals," Physical Review, vol. 25, no. 6, pp. 753-761, 06/01/ 1925, doi: 10.1103/PhysRev.25.753.

[35] K. M. Gameel, I. M. Sharafeldin, A. U. Abourayya, A. H. Biby, and N. K. Allam, "Unveiling CO adsorption on Cu surfaces: new insights from molecular orbital principles," Physical Chemistry Chemical Physics, 10.1039/C8CP04253E vol. 20, no. 40, pp. 25892-25900, 2018, doi: 10.1039/C8CP04253E.

[36] A. W. Robinson, D. P. Woodruff, J. S. Somers, A. L. D. Kilcoyne, D. E. Ricken, and A. M. Bradshaw, "Photoelectron diffraction study of the local adsorption site in the Cu(110)(2 × 3)-N structure," Surface Science, vol. 237, no. 1, pp. 99-107, 1990/11/01/ 1990, doi: https://doi.org/10.1016/0039- 6028(90)90522-A.

[37] M. O. Ozbek, I. Onal, and R. A. van Santen, "Effect of Surface and Oxygen Coverage on Ethylene Epoxidation," Topics in Catalysis, vol. 55, no. 11, pp. 710-717, 2012/08/01 2012, doi: 10.1007/s11244-012-9870-7.