Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces

In this study, we define the k-kinematic surface Mg which is obtained from a surface M on Euclidean 3- space E3 by applying rigid motion described by quaternions to points of M . Then we investigate and calculate for this surface some important concepts such as shape operator, asymptotic vectors, conjugate tangent vectors, Euler theorem and Dupin indicatrix which help to understand a surface differential geometrically well.

___

A.C. Çöken, Ü. Çiftçi and C. Ekici, “On parallel timelike ruled surfaces with timelike rulings”, Kuwait Journal of Science and Engineering, vol.35.1A, 21, 2008.

T. Craig, “Note on Parallel Surfaces”, Journal fr die reine und angewandte Mathematik, vol. 94, pp. 162-170, 1883.

L.P. Eisenhart, A treatise on the differential geometry of curves and surfaces, Ginn, 1909.

S. Nizamoğlu, “Surfaces réglées paralleles”, Ege Üniv. Fen Fak. Derg., vol. 9, pp. 37-48, 1986.

A. Grey, “Modern differential geometry of curves and surfaces”, Studies in Advanced Mathematics, CRC Press, Ann Arbor, 1993.

A.M. Patriciu, “On some 1,3H3-helicoidal surfaces and their parallel surfaces at a certain distance in 3-dimensional Minkowski space”, Annals of the University of Craiova-Mathematics and Computer Science Series, vol. 37(4), pp. 93- 98, 2010.

W. Kühnel, “Differential Geometry”, Student Mathematical Library, vol. 16. American Mathematical Society, Providence, 2002.

R. Lopez, “Differential geometry of curves and surfaces in Lorentz-Minkowski space”, International Electronic Journal of Geometry, vol.7, pp.44-107, 2014.

C. Ekici and A. C. Çöken, “The integral invariants of parallel timelike ruled surfaces”, Journal of Mathematical Analysis and Applications, vol. 393(2), pp. 97-107, 2012.

M. Çimdiker and C. Ekici “On the Spacelike Parallel Ruled Surfaces with Darboux Frame”, International Journal of Mathematical Combinatorics, vol. 2, pp. 60-69, 2017.

M. Dede and C. Ekici “On parallel ruled surfaces in Galilean space”, Kragujevac Journal of Mathematics, vol. 40(1), pp. 47-59, 2016.

Y. Ünlütürk and C. Ekici, “On Parallel Surfaces of Ruled Surfaces with Null Ruling in Minkowski 3-space”, International Mathematical Forum, vol. 7(15), pp. 727-736, 2012.

Ü. Z. Savcı, A. Görgülü and C. Ekici, “Parallel Surfaces of Ruled Weingarten Surfaces”, New Trends in Mathematical Sciences, vol. 3(4), pp. 237-246, 2015.

Y. Ünlütürk and C. Ekici, “Parallel Surfaces Satisying the Properties of Ruled Surfaces in Minkowski 3 space”, Global Journal of Science Frontier Research: F Mathematics and Decision Sciences, vol.14(1-F), pp. 79-95, 2014.

Y. Ünlütürk, C. Ekici and E. Özüsağlam, “Spacelike parallel ruled surfaces in Minkowski 3 space 3 1 E ”, Journal of Advanced Research in Pure Mathematics, vol. 7(4), pp. 210-215, 2015. [16] Y. Ünlütürk and E. Özüsağlam, “On Parallel Surfaces In Minkowski 3-Space”, TWMS J. App. Eng. Math., vol. 3(2), pp. 214-222, 2013.

Ö. Tarakçı and H.H. Hacısalihoğlu, “Surfaces At A Constant Distance From The Edge Of Regression On A Surface”, Applied Mathematics and Computation, vol. 155, pp. 81- 93, 2004.

D. Sağlam and Ö. Boyacıoğlu Kalkan, “Surfaces At A Constant Distance From Edge Of Regression On A Surface In 3 1 E ”, Differential Geometry-Dynamical Systems, vol. 12, pp. 187- 200, 2010.

D. Sağlam and Ö. Boyacıoğlu Kalkan, “The Euler Theorem and Dupin Indicatrix For Surfaces At A Constant Distance From Edge Of Regression On A Surface In 3 1 E ,” Matematiqki Vesnik, vol. 65(2), pp. 242-249, 2013.

D. Sağlam and Ö. Kalkan, “Conjugate tangent vectors and asymptotic directions for surfaces at a constant distance from edge of regression on a surface in 3 1 E ”, Konuralp Jornal of Mathematics (KJM), vol. 2(1), pp. 24-35, 2014.

W.R. Hamilton, “On Quaternions; or on a new System of Imaginaries in Algebra” (letter to John T. Graves, dated October 17, 1843)." Philos. Magazine, vol.25, pp. 489-495, 1843.

W.K. Clifford, “Preliminary sketch of biquaternions”, Proc. London Math. Soc., pp. 381- 395, 1871.

A.T. Yang, “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms”, Ph.D Thesis, Columbia Univercity, 1963.

A.T. Yang and F. Freudenstein, “Application of a dual-number quaternion algebra to the analysis of spatial mechanisms”, ASME journal of Applied Mechanics, vol. 86E(2), pp. 300-308, 1964.

E. Study, “Von den Bewegungen und Umlegungen”, Math. Ann., vol.39, pp.441-566, 1891.

E. Study, Geometrie der Dynamen, Leipzig, Germany, 1903.

A.P. Kotel’nikov, Vintovoe Schislenie i Nikotoriya Prilozheniya evo k Geometrie i Mechaniki, Kazan, 1895.

H. Pottmann and J. Wallner, Computational Line Geometry, Springer Verlag, New York, 2001.

F.M. Dimentberg, The Screw Calculus and Its Applications in Mechanics, Moscow, 1965. [30] M. Hamann, “Line-symmetric motions with respect to reguli”, Mechanism and Machine Theory, vol. 46 (7), pp. 960-974, 2011.

Q.J. Ge, “Kinematics-driven geometric modeling: A framework for simultaneous NC toolpath generation and sculpted surface design”, in: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, MN, pp.1819-1824, 1996.

Q.J. Ge, D. Kang and M. Sirchia, “Kinematically generated dual tensor-product surfaces”, in: ASME Design Engineering Technical Conference, 1998.

B. Jütler, M.G. Wagner, “Computer aided geometric design with spatial rational B-spline motions”, ASME J. Mech. Design, vol. 119(2) pp. 193-201, 1996.

H. Pottmann, J. Wallner, “Contributions to motion based surface design”, Technical report Nr. 45, Institut fr Geometrie, Technische Universitt Wien, 1997

K. Sprott, B. Ravani, “Kinematic generation of ruled surfaces”, Advances in Computational Mathematics, vol. 17, pp. 115-133, 2002.

J.M. Selig, M. Husty, “Half-turns and line symmetric motions”, Mech. Mach. Theory, vol. 46(2), pp. 156-167, 2011.

H.H. Hacısalihoğlu, Diferensiyel Geometri, İnönü Üniversitesi Fen-Edeb. Fakültesi Yayınları, Ankara, 1983.

A. Sabuncuoğlu, Diferensiyel Geometri, Nobel Yayıncılık, 2010.