Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays

Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays

This study was to evaluate the adsorption capability of clay minerals of halloysite, bentonite, kaolinite, and natural clay (obtained from the Avanos) to remove Maxilon Golden Yellow GL EC 400% (MGY400) from aqueous solution. Different amounts of adsorbents (0.5, 1.0, 1.5 and 2.0 g.) were taken from the samples and obtained the most dye-removal clay material and adsorbent amount were found according to the results. Adsorption was applied on all clays at 25 oC temperature, 200 rpm mixing speed and different contact times (2, 5, 10, 20, 30, 40, 50, 60 min) in the batch reactor. Bentonite provided the highest dyestuff removal. Therefore, the second phase adsorption was continued with bentonite. The adsorption with bentonite were performed at different temperature (13 oC, 25 oC, 50 oC) and pH values (2, 4, 6, 8, 10, 12). When the pH was 12 and the temperature was 25 oC, it was determined that the removal rate of the dyestuff of bentonite reached up to 99.7%. According to the results, adsorption kinetics and isotherms were investigated, and evaluation was made for working conditions.Keywords: adsorption, bentonite, clay, dyestuff, halloysite

___

  • [1] M. J. Sánchez-Martín, M. C. Dorado, C. del Hoyo, and M. S. Rodríguez-Cruz, “Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays,” J. Hazard. Mater., vol. 150, no. 1, pp. 115– 123, 2008.
  • [2] M. Doğan, M. H. Karaoğlu, and M. Alkan, “Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite.,” J. Hazard. Mater., vol. 165, no. 1–3, pp. 1142–51, 2009.
  • [3] G. Jing, Z. Sun, P. Ye, S. Wei, and Y. Liang, “Clays for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: a review,” Water Pract. Technol., vol. 12, no. 2, pp. 432–443, 2017.
  • [4] M. Tanyol, “Removal of Remazol Brilliant Blue R from aueous solutions using raw and modified bentonite,” Kafkas Univ. J. Sci., vol. 9, no. 1, pp. 46– 52, 2016.
  • [5] A. Ghribi and M. Bagane, “Kinetic modeling for the adsorption of methylene blue from aqueous solutions using Tunisian clay,” in IREC2015 The Sixth International Renewable Energy Congress, 2015.
  • [6] P. Liu and L. Zhang, “Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents,” Sep. Purif. Technol., vol. 58, no. 1, pp. 32–39, 2007.
  • [7] A. Gürses, Ç. Doǧar, M. Yalçin, M. Açikyildiz, R. Bayrak, and S. Karaca, “The adsorption kinetics of the cationic dye, methylene blue, onto clay,” J. Hazard. Mater., vol. 131, no. 1–3, pp. 217–228, 2006.
  • [8] S. S. Tahir and N. Rauf, “Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay,” Chemosphere, vol. 63, no. 11, pp. 1842– 1848, 2006.
  • [9] E. Errais, J. Duplay, F. Darragi, I. M'Rabet, A. Aubert, F. Huber, G. Morvan, “Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters,” Desalination, vol. 275, no. 1–3, pp. 74–81, 2011.
  • [10] N. Abidi, E.Errais, J. Duplay, A. Berez, A. Jrad, G. Schäfer, M. Ghazi, K. Semhi, M. Trabelsi-Ayadi, “Treatment of dyecontaining effluent by natural clay,” J. Clean. Prod., vol. 86, pp. 432–440, 2015.
  • [11] Z. Hicham, Z. Bencheqroun, I. El Mrabet, M. Kachabi, M. Nawdali, and I. Neves, “Removal of Basic Dyes from Aqueous Solutions by Adsorption onto Moroccan Clay (Fez City),” Mediterr. J. Chem., vol. 8, no. 3, pp. 158–167, 2019.
  • [12] E. Kayman, “Adsorption of lead ions from aqueous solutions by activated carbon produced from chestnut shell and apricot stone,” Istanbul Technical University, Institute of Science and Technology, MSc. Thesis, 2009.
  • [13] “C.I. Basic yellow 28 | C21H27N3O5S - PubChem.” https://pubchem.ncbi.nlm.nih.gov/compou nd/Basic_Yellow_28#section=2DStructure (accessed Feb. 13, 2019).
  • [14] P. F. Kerr, “Formation and occurrence of clay minerals,” Clays Clay Miner., vol. 1, pp. 19–32, 1952.
  • [15] W. A. Deer, R. A. Howie, and J. Zussman, An introduction to the Rock-forming Minerals. 1992.
  • [16] M. L. Jackson, “Soil chemical analysis. Verlag: Prentice Hall, Inc., Englewood Cliffs, NJ. 1958, 498 S. DM 39.40,” Zeitschrift für Pflanzenernährung, Düngung, Bodenkd., vol. 85, no. 3, pp. 251–252, 1959.
  • [17] Ö. Şahin, M. Kaya, and C. Saka, “Plasmasurface modification on bentonite clay to improve the performance of adsorption of methylene blue,” Appl. Clay Sci., vol. 116–117, pp. 46–53, 2015.
  • [18] O. Sözüdogru, B. A. Fil, R. Boncukcuoglu, E. Aladag, and S. Kul, “Adsorptive removal of cationic (BY2) dye from aqueous solutions onto Turkish clay: Isotherm, kinetic, and thermodynamic analysis,” Part. Sci. Technol., vol. 34, no. 1, pp. 103–111, 2016.
  • [19] Q. Zhou, Q. Gao, W. Luo, C. Yan, Z. Ji, and P. Duan, “One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 470, pp. 248–257, 2015.
  • [20] B. A. Fil, K. Z. Karakas, R. Boncukcuoglu, and A. E. Yılmaz, “Removal of Cationic Dye(Basic Red 18) from Aqueous Solution Using Natural Turkish Clay,” Glob. NEST J., vol. 15, no. 4, pp. 529–541, 2013.
  • [21] B. Makhoukhi, M. A. Didi, H. Moulessehoul, A. Azzouz, and D. Villemin, “Diphosphonium ion-exchanged montmorillonite for Telon dye removal from aqueous media,” Appl. Clay Sci., vol. 50, no. 3, pp. 354–361, 2010.
  • [22] S. T. Akar and R. Uysal, “Untreated clay with high adsorption capacity for effective removal of C.I. Acid Red 88 from aqueous solutions: Batch and dynamic flow mode studies,” Chem. Eng. J., vol. 162, no. 2, pp. 591–598, 2010.
  • [23] B. B. Johnson, “Effect of pH, temperature, and concentration on the adsorption of cadmium on goethite,” Environ. Sci. Technol., vol. 24, no. 1, pp. 112–118, 1990.
  • [24] S. Kayacan, “Removal of dye materials from aqueous solutions by adsorption on coals and cokes,” Ankara University, Institute of Science and Techology, MSc Thesis, 2007.
  • [25] R. Gürellier, “Adsorption kinetic investigations of low concentrated uranium in aqua media by polymeric adsorban,” Ankara University, Institute of Science and Technology, MSc Thesis, 2004.
  • [26] J. Wang, G. Liu, T. Li, and C. Zhou, “Physicochemical studies toward the removal of Zn(II) and Pb(II) ions through 1 adsorption on montmorillonitesupported zero-valent iron nanoparticles,” RSC Adv., no. 38, pp. 29609–30408, 2015.
  • [27] K. A. Kareem, “Removal and Recovery of Methylene Blue Dye from Aqueous Solution using Avena Fatua Seed Husk,” Ibn Al-Haitham J. Pure Appl. Sci., vol. 29, no. 3, pp. 179–194, 2016.
  • [28] G. Labuto, D. S. Cardona, K. B. Debs, A. R.Imamura, K. C. H. Bezerra, E. N. V. M. Carrilho, P. S. Haddad, “Low-cost agroindustrial biomasses and ferromagnetic bionanocomposites to cleanup textile effluents,” Desalin. Water Treat., vol. 112, pp. 80–89, 2018.
  • [29] M. Kılıç and A. S. K. Janabi, “Investigation of Dyes Adsorption with Activated Carbon Obtained from Cordia myxa,” Bilge Int. J. Sci. Technol. Res., vol. 1, no. 2, pp. 87–104, 2017.
  • [30] Y. M. Lvov, D. G. Shchukin, E. Abdullayev, D. Shchukin, and Y. Lvov, “PMSE 193-Halloysite clay nanotubes as a reservoir for corrosion inhibitors and template for layer-by-layer encapsulation" Polym. Mater. Sci. Eng., vol. 99, pp. 331– 332, 2008.
  • [31] P. I. Au and Y. K. Leong, “Rheological and zeta potential behaviour of kaolin and bentonite composite slurries,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 436, pp. 530–541, 2013.
  • [32] G. Nechifor, D. E. Pascu, M. Pascu (neagu, G. A. Traistaru, A. A. Bunaciu, and H. Y. Aboul-Enein, “Study of Adsorption Kinetics and Zeta Potential of Phosphate and Nitrate Ions on a Cellulosic Membrane,” Rev. Roum. Chim, vol. 58, no. 8, pp. 591–597, 2013.
  • [33] V. K. Gupta, S. Agarwal, H. Sadegh, G. A. M. Ali, A. K. Bharti, and A. S. Hamdy Makhlouf, “Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase,” J. Mol. Liq., vol. 237, pp. 466–472, 2017.
  • [34] A. Olgun and N. Atar, “Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste,” J. Hazard. Mater., vol. 161, no. 1, pp. 148–156, 2009.
  • [35] I. Twardowska, H. E. Allen, A. F. Kettrup, and W. J. Lacy, Solid Waste: Assessment, Monitoring and Remediation, 1st ed., vol. 4. Pergamon, 2004.
  • [36] H. I. Albroomi, M. Abouelfotoh Elsayed, A. Baraka, and M. K. Abdelmaged, “Factors Affecting the Removal of a Basic and an Azo Dye from Artificial Solutions by Adsorption Using Activated Carbon,” J. Turkish Chem. Soc. Sect. A Chem., vol. 2, no. 1, pp. 17–33, 2015.
  • [37] Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh, and G. M. Walker, “Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon,” Dye. Pigment., 2008.
  • [38] G. Annadurai, R.-S. Juang, and D.-J. Lee, “Use of cellulose-based wastes for adsorption of dyes from aqueous solutions,” J. Hazard. Mater., vol. 92, no. 3, pp. 263–274, 2002.
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü
Sayıdaki Diğer Makaleler

The Potential of the Karaman Wastewater Treatment Plant to Generate Electricity with MHP and Reduction of Electricity Bill Amounts by Adjusting Working Hours of the Facility

Ufuk SÜĞÜRTİN, Türker Fedai ÇAVUŞ

Determining the Factors that Influence the Effectiveness of the Health Sector in the OECD Countries

Selin Ceren TURAN, Mehmet Ali CENGİZ

Investigation of the Frequency and Voltage Dependent Dielectric Properties of Au/n-SiC Metal Semiconductor (MS) and Au/Al2O3/n-SiC Metal-InsulatorSemiconductor (MIS) Structures

İbrahim YÜCEDAĞ, Gülçin ERSÖZ DEMİR

The Role of Sodium Lauryl Sulfate on the Film Properties of Styrene-Butyl Acrylate-Acrylic Acid Copolymer Latex

Bilge EREN, Yasemin SOLMAZ

Experimental Investigation on Effect to the Specific Strength of FDM Fabrication Parameters Using Taguchi Method

Sedat İRİÇ

Classification of Breast Cancer Images Using Ensembles of Transfer Learning

Kadir GUZEL, Gokhan BILGIN

Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays

Sevgi GÜNEŞ DURAK

Design of Heat Pipe Assisted Thermoelectric Generator and Experimental Investigaton of the Power Performance

Murat ÖZSOY, İmdat TAYMAZ, Yaşar İSLAMOĞLU, Cem PARMAKSIZOĞLU, Erman ASLAN

Synthesis, Characterization and Photocatalytic Properties of Non-peripherally 3- (pyridin-4-yl) propane-1-oxy Groups Substituted Cu (II) Phthalocyanineand Water Soluble Derivative

Ece Tuğba SAKA

Theoretical and Experimental Comparison of Micro-hardness and Bulk Modulus of Orthorhombic YBa2Cu3-xZnxO Superconductor Nanoparticles Manufactured using Sol-Gel Method

Elif AŞIKUZUN, Özgür ÖZTÜRK