Probabilistic Slope Stability Analysis: A Case Study

Probabilistic slope stability analyses are becoming more and more popular to evaluate the safety level of slopes and associated risk and reliability, especially in the recent years. The probabilistic approach can take into account the uncertainties and natural variability in material properties, as well as in environmental factors, by using various statistical distribution functions (such as normal, lognormal etc.) for random variables. It is already noted by various researchers that, a slope with a deterministic factor of safety larger than 1.00 using average values of soil parameters may have a significant level of probability of failure, if the material properties are unknown, or contain significant uncertainty/variability. In this study, a well-documented landslide case study is used to demonstrate the importance of probabilistic approach in slope stability; to investigate the effects of considering variability in material properties; and to compare deterministic and probabilistic slope stability analyses results. Deterministic limit equilibrium, probabilistic limit equilibrium, and probabilistic finite element analyses are conducted for Lodalen landslide in Oslo, Norway and the results are compared with each other. The factor of safety, the probability of failure and the most critical failure surface are investigated with and without statistical cross-correlation of soil’s shear strength parameters. The results of this study can provide further insights into the comparison of deterministic and probabilistic approaches in slope safety.

___

R. A. Sevaldson, “The slide in Lodalen, October 6th, 1954”, Geotechnique, vol. 6, no.4, pp. 167- 182, 1956.

H. El-Ramly, N.R. Morgenstern, and D.M. Cruden, “Lodalen slide: a probabilistic assessment”, Canadian Geotechnical Journal, vol. 43, no.9, pp. 956-968, 2006.

G. Bhattacharya, D. Jana, S. Ojha and S. Chakraborty “Direct search for minimum reliability of earth slopes.” Computers and Geotechnics, Vol. 30, Issue 6, pp. 455-462, 2003.

H. El-Ramly, N. R. Morgenstern, D. M. Cruden, “Probabilistic assessment of a cut slope in residual soil”, Geotechnique, vol. 55, pp.77-84, 2005.

R. E. Hammah, T. E. Yacoub and J. H. Curran, “Probabilistic Slope Analysis with the Finite Element Method”, Asheville 2009, North Carolina, U.S.A., 2009.

S. E. Cho, “Probabilistic stability analyses of slopes using the ANN-based response surface.” Computers and Geotechnics, Vol. 36, No. 5, pp. 787-797, 2009.

B. Akbas and N. Huvaj, “Probabilistic Slope Stability Analyses Using Limit Equilibrium and Finite Element Methods”, Proc. 5th International Conference on Geotechnical Safety and Risk, Eds. Schweckendiek et al., Rotterdam, the Netherlands, 2015.

S. Javankhoshdel, S. and R. J. Bathurst, "Deterministic and probabilistic failure analysis of simple geosynthetic reinforced soil slopes." Geosynthetics International, v. 24(1), 14-29, 2016.

E. A. Oguz, Y. Yalcin, and N. Huvaj, “Probabilistic Slope Stability Analyses: Effects of the Coefficient of Variation and the Cross- Correlation of Shear Strength Parameters”, Proc. of Geotechnical Frontiers Conference, ASCE GeoInstitute, 12-15 March 2017, Orlando, Florida, 2017.

P. Lumb, “Safety factors and the probability distribution of soil strength.” Canadian Geotechnical Journal, 7(3), 225–242, 1970.

T. H. Wolff, “Analysis and design of embankment dam slopes: A probabilistic approach”, Ph.D. thesis, Purdue University, Lafayette, Ind. 1985.

E. Spencer, “A method of analyses of the stability of embankment assuming inter-slice forces”, Geotechnique, vol. 17, pp. 11-26, 1967.

S. E. Cho, “Probabilistic Assessment of Slope Stability That Considers the Spatial Variability of Soil Properties.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, Issue 7, pp. 975-984, 2010.

T. M. H. Le, M. Sanchez, D. Gallipoli and S. Wheeler, “Probabilistic modelling of autocorrelation characteristics of heterogeneous slopes.” Geomechanics and Geoengineering, Vol. 10, Issue 2, pp. 95-108, 2014.

D. V. Griffiths and G. A. Fenton, “Probabilistic Slope Stability Analysis by Finite Elements.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, Issue 5, pp. 507-518, 2004.

M. Tabarroki, F. Ahmad, R. Banaki, S. Jha and J. Ching, “Determining the factors of safety of spatially variable slopes modeled by random fields.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, Issue 12, pp. 2082-2095, 2013.

S. H. Jiang, D. Q. Li, Z. J. Cao, C. B. Zhou and K. K. Phoon, “Efficient System Reliability Analysis of Slope Stability in Spatially Variable Soils Using Monte Carlo Simulation” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, Issue 2, 04014096, 2014.