On a Generalized Difference Sequence Spaces of Fractional Order associated with Multiplier Sequence Defined by a Modulus Function

On a Generalized Difference Sequence Spaces of Fractional Order associated with Multiplier Sequence Defined by a Modulus Function

Let Γ(?) denotes the gamma function of a real number ? ∉ {0, −1, −2, … }. Then the difference matrix Δa of a fractional order ? is defined as Using the difference operator Δa , we introduce paranormed difference sequence spaces ?ఏ(Δఈ ?, Λ, ?) and ?ఏ(Δఈ, ?, Λ, ?) of fractional orders involving lacunary sequence, ?; modulus function, ? and multiplier sequence, Λ = (?). We investigate topological structures of these spaces and examine various inclusion relations.Keywords: Difference operator Δa , Paranormed sequence space, Lacunary sequence, Modulus function, Multiplier sequence.

___

  • [1] H. Kızmaz, On certain sequence spaces, Canadian Mathematical Bulletin, Vol. 24, no. 2, pp. 169-176, 1981.
  • [2] M. Et, R. Ҫolak, On some generalized difference sequence spaces, Soochow Journal of Mathematics, Vol. 21, no. 4, pp. 377-386, 1995.
  • [3] M. Et, A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, Bulletin of Malaysian Mathematical Science Society, Vol. 23, pp. 25-32, 2000.
  • [4] M. Et, M. Başarır, On some new generalized difference sequence spaces, Periodica Mathematica Hungarica, Vol. 35, no. 3, pp. 169-175, 1997.
  • [5] E. Malkowsky, S.D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order ?, Analysis, Vol. 17, pp. 87-97, 1997.
  • [6] R. Ҫolak, Lacunary strong convergence of difference sequences with respect to a modulus function, Filomat, Vol. 17, pp. 9-14, 2003.
  • [7] C. Aydin, F. Başar, Some new difference sequence spaces, Applied Mathematics and Computation, Vol. 157, no. 3, pp. 677-693, 2004.
  • [8] M. Mursaleen, Generalized spaces of difference sequences, Journal of Mathematical Analysis and Application, Vol. 203, no. 3, pp. 738-745, 1996.
  • [9] Ç. A. Bektaş, M. Et, R. Çolak, Generalized difference sequence spaces and their dual spaces, Journal of Mathematical Analysis and Application, Vol. 292, pp. 423-432, 2004. [10]P. Baliarsingh, S. Dutta, A unifying approach
  • to the difference operators and their applications, Boletim da Sociedade Paranaense de Matematica, Vol. 33, pp. 49- 57, 2015.
  • [11]P. Baliarsingh, S. Dutta, On the classes of fractional order difference sequence spaces and their matrix transformations, Applied. Mathematics and Computation, Vol. 250, pp. 665-674, 2015.
  • [12]P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces, Applied Mathematics and Computation, Vol. 219, pp. 9737-9742, 2013.
  • [13]P. Baliarsingh, U. Kadak, On matrix transformations and Hausdorff measure of noncompactness of Euler difference sequence spaces of fractional order, Quaestiones Mathematica, DOI: 10.2989/16073606.2019.1648325.
  • [14]J. Meng, L. Mei, Binomial difference sequence spaces of fractional order, Journal of Inequalities and Application, vol. 2018, 274, 2018.
  • [15]T. Yaying, A. Das, B. Hazarika, P. Baliarsingh, Compactness of binomial difference sequence spaces of fractional order and sequence spaces, Rendiconti del Circolo Matematico di Palermo series II, vol. 68, 459-476, 2019.
  • [16]T. Yaying, B. Hazarika, On sequence spaces generated by binomial difference operator of fractional order, Mathematica Slovaca, vol. 69, no. 4, pp. 901-918, 2019.
  • [17]T. Yaying, Paranormed Riesz difference sequence spaces of fractional order, Kragujevac Journal of Mathematics, vol. 46, no. 2, pp. 175-191, 2022.
  • [18]S. Dutta, P. Baliarsingh, A note on paranormed difference sequence spaces of fractional order and their matrix transformations, Journal of Egyptian Mathematical Society, vol. 22, pp. 249-253, 2014.
  • [19]U. Kadak, P. Baliarsingh, On certain Euler difference sequence spaces of fractional order and related dual properties, Journal of Nonlinear Science and Application, vol. 8, pp. 997-1004, 2015.
  • [20]P. Baliarsingh, U. Kadak, M. Mursaleen, On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems, Quaestiones Mathematica, vol. 41, no. 8, pp. 1117-1133, 2018.
  • [21]U. Kadak, Generalized statistical convergence based on fractional order difference operator and its applications to approximation theorems, Iran Journal of Science and Technology Transactions A Science, vol. 43, no. 1, 225-237, 2019.
  • [22]U. Kadak, Generalized lacunary statistical difference sequence spaces of fractional order, International Journal of Mathematics and Mathematical Science, vol. 2015, Article ID 984283, 6 pages, 2015.
  • [23]U. Kadak, Generalized Lacunary Statistical Difference Sequence Space of Fractional Order, International Journal of Mathematics and Mathematical Sciences, vol. 2015, Article ID 984283, 6 pages, 2015.
  • [24]U. Kadak, Generalized weighted invariant mean based on fractional difference operator with applications to approximation theorems for functions of two variables, Results Mathematics, vol. 72, no. 3, pp. 1181-1202, 2017.
  • [25]U. Kadak, Weighted statistical convergence based on generalized difference operator involving (?, ?)-Gamma function and its application to approximation theorems, Journal of Mathematical Analysis and Applications, vol. 448, no. 2, pp. 1633-1650, 2017.
  • [26]L. Nayak, M. Et, P. Baliarsingh, On certain generalized weighted mean fractional difference sequence spaces, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, vol. 89, pp. 163-170, 2019.
  • [27]T. Yaying, On a new class of generalized difference sequence spaces of fractional order defined by modulus function, Proyecciones, vol. 38, no. 3, 485-497, 2018.
  • [28]H. Furkan, On some ? −difference sequence spaces of fractional order, Journal of Egyptian Mathematical Society, vol. 25, no. 1, pp. 37-42, 2017.
  • [29]F. Özger, Characterisations of compact operators on ?௣ −type fractional sets of sequences, Demonstrio Mathematica, vol. 52, pp. 105-115, 2019.
  • [30]F. Özger, Some geometric characterisations of a fractional Banach set, Communications Faculty of Sciences University of Ankara Series A1, Mathematics and Statistics, vol. 68, no. 1, 546-558, 2019.
  • Colloquium Mathematicum, vol. 2, pp. 241- 244, 1951.
  • [32]I.J. Schoenberg, The integrability of certain functions and related summability methods, American Mathematical Monthly, vol. 66, pp. 361-375, 1959.
  • [33]I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proceedings of Cambridge Philosophical Society, vol. 64, pp. 335-340, 1968.
  • [34]H. Nakano, Concave Modulars, Journal of Mathematical Society of Japan, vol. 5, pp. 29-49, 1959.
  • [35]I.J. Maddox, Spaces of strongly summable sequences, The Quarterly Journal of Mathematics, Oxford, vol. 18, no. 2, pp. 345- 355, 1967.
  • [36]W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canadian Journal of Mathematics, vol. 25, pp. 973-978, 1973.
  • [37]I.J. Maddox, Elements of Functional Analysis, Second edition., University Press, Cambridge, 1988.
  • [38]B.C. Tripathy, M. Et, On Generalized Difference Lacunary Statistical Convergence, Studia Univ. "Babeş-Bolyai", Mathematica, L(1), 2015.
  • [39]M. Et, Generalized Cesàro difference sequence spaces of non absolute type involving lacunary sequence, Applied Mathematics and Computation, vol. 219, pp. 9372-9376, 2013.
  • [40]G. Goes, S. Goes, Sequences of bounded variation and sequences of Fourier coefficients, Mathematische Zeitschrift, vol. 118, pp. 93-102, 1917.
  • [41]A. Esi, B.C. Tripathy, Strongly almost convergent generalized difference sequences associated with multiplier sequences, Mathematica Slovaca, vol. 57, no. 4, pp. 339- 348, 2017.
  • [42]J.A. Fridy, C. Orhan, Lacunary Statistical Convergence, Pacific Journal of Mathematics, vol. 160, no. 1, pp. 43-51, 1993.
  • [43]S. Pehlivan, B. Fisher, On Some Sequence Spaces, Indian Journal of Pure and Applied Mathematics, vol. 25, no. 10, pp. 1067-1071, 1994.
  • [44]A.R. Freedman, J.J. Sember, M. Raphael, Some Cesàro-type Summability Spaces, Proceedings of London Mathematical Society, vol. 37, no. 3, 508-520, 1978.