Mekaniksel alaşımlama ile üretilen nanokristal Mg50Cu50 tozları

Bu çalışmada Mg ve Cu ikili karışımı ile nanokristal Mg50Cu50 kompozisyonlutoz alaşımı mekaniksel alaşımlama tekniği ile sentezlendi. Mekaniksel alaşımlama süresinin, toz alaşımın faz değişimine ve mikro sertliğine etkisi X-ışını kırınımı (XRD), taramalı elektron mikroskobu (SEM) ve Vickers mikro sertlik (HV) cihazı ile incelendi. Alaşımın mikro sertlik değeri artan mekaniksel alaşımlama zamanı ile yükseldi ve final ürün için ~600 Mpa olarak ölçüldü. Mg50Cu50 alaşımının kristal boyutu XRD piklerinin genişlemesi ile Debye Scherrer eşitliği kullanılarak hesaplandı. Toz alaşımın kristal boyutu ayrıca geçirimli elektron mikroskobu (TEM) ile teyit edildi ve yaklaşık 10 nm olarak belirlendi. Mekaniksel olarak alaşımlanan Mg50Cu50 tozlarının termal özellikleri diferansiyel taramalı kalorimetri ile (DSC) analiz edildi. DSC sonuçlarına göre ~ 650 ˚C’ de Magnezyum (Mg) elementinin erime sıcaklığına ait endotermik bir pik gözlendi.

Nanocrystalline Mg50Cu50 powders produced by mechanical alloying

In the present study, binary mixture of Mg and Cu with nominal composition of nanocrystalline Mg50Cu50 powder alloy was synthesized by mechanical alloying. The effect of mechanical alloying time on the phase evolution and microhardness of the powder alloy was investigated by X-Ray diffractometry (XRD), scanning electron microscopy (SEM) and Vickers microhardness (HV) tester. The micro hardness value of the alloy increased with increasing mechanical alloying time and it was measured ~600 Mpa  for final product. The crystallite size of Mg50Cu50 alloy calculated with broadening of XRD peaks by Debye Scherrer equation. The crystallite size of the powder alloy was also confirmed by transmission electron microscopy (TEM) and it was determined approximately 10 nm. Thermal properties of the mechanically alloyed Mg50Cu50 powders were examined by differential scanning calorimetry (DSC). From DSC traces, an endothermic peak which belongs to melting point of Magnesium (Mg) element was observed at ~ 650 ˚C

___

  • [1] D. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, Z.H. Jin, “Aging behavior of Cu–Ni–Si alloy,” Mater. Sci. Eng., A, vol. pp. 361, 93-99, 2003.
  • [2] M. Azimi, G.H. Akbari, “Characterization of nano-structured Cu–6 wt.% Zr alloy produced by mechanical alloying and annealing methods,” J. Alloys Compd., vol. 555, pp. 112-116, 2013
  • [3] K.J. Laws, K.F. Shamlaye, J.D. Cao, J.P. Scicluna, M. Ferry, “Locating new Mg based bulk metallic glasses free of rare earth elements,” J. Alloys Comp., vol. 542, pp. 105–110, 2012.
  • [4] P. Rojas, S. Ordonez, D. Serafini, A. Zuniga, E. Lavernia, “Microstructural evolution during mechanical alloying of Mg and Ni,” J. Alloys Comp., vol. 391, pp. 267–276, 2005.
  • [5] Y. Zhenxing, L. Zuyan, W. Erde, “Hydrogen storage properties of nanocomposite Mg–Ni–Cu–CrCl3 prepared by mechanical alloying,” Mater. Sci. Eng., A, vol. 335, pp. 43–48, 2002.
  • [6] R. Ölmez, G. Çakmak, T. Öztürk, “Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti,” Int. J. Hydrogen Energy, vol. 35, pp. 11957 -11965, 2010.
  • [7] B. Zhang, Y. Lv, J. Yuan, Y. Wu, “Effects of microstructure on the hydrogen storage properties of the melt-spun Mg-5Ni-3La (at.%) alloys,” J. Alloys Comp., vol. 702, pp. 126-131, 2017.
  • [8] Y. Zhou, L. Bian, G. Chen, L. Wang, W. Liang, “Influence of Ca addition on microstructural evolution and mechanical properties of near-eutectic Mg-Li alloys by copper-mold suction casting,” J. Alloys Comp., vol. 664, pp. 85-91, 2016.
  • [9] A. Fikadu, B. Hertog, O. Ledyaev, D. Volovik, R. Miller, A. Osinsky, S. Bakhshi, W. V. Schoenfeld, “High responsivity solar blind photo detector based on high Mg content MgZnO film grown via pulsed metal organic chemical vapour deposition,” Sens. Actuators A, vol. 249, pp. 263–268, 2016.
  • [10] X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, “On the criteria of bulk metallic glass formation in MgCu-based alloys,” Intermetallics, vol. 13, pp. 638–641, 2005.
  • [11] C. Suryanarayana, “Mechanical alloying and milling,” Prog Mater Sci., vol. 46, pp. 1-184, 2001.
  • [12] C. Aguilar, D. Guzmán, F. Castro, V. Martínez, F. Cuevas, S. Lascano, T. Muthiah, “Fabrication of nanocrystalline alloys Cu-Cr-Mo super satured solid solution by mechanical alloying,” Mater. Chem. Phys., vol. 146, pp. 493-502, 2014.
  • [13] K. Wieczerzak, P. Bala, R. Dziurka, T. Tokarski, G. Cios, T. Koziel, L. Gondek, “The effect of temperature on the evolution of eutectic carbides and M7C3 - M23C6 carbides reaction in the rapidly solidified Fe-Cr-C alloy,” J. Alloys Compd., vol. 698, pp. 673-684, 2017.
  • [14] Y. Guo, L. Jia, B. Kong, S. Zhang, F. Zhang, H. Zhang, “Microstructure and surface oxides of rapidly solidified Nb-Si based alloy powders,” Mater. Des., vol. 120, pp. 109–116, 2017.
  • [15] Y. Wang, H. Ji, X. Yan, H. Gao, W. Ma, Z. Zhang, “Microstructural and compositional evolution of nanoporous silver during dealloying of rapidly solidified Mg65Ag35 alloy,” Intermetallics, vol. 76, pp. 49-55, 2016.
  • [16] A. A. Al-Joubori, C. Suryanarayana, “Synthesis of stable and metastable phases in the Ni-Si system by mechanical alloying,” Powder Technol., vol. 302, pp. 8–14, 2016.
  • [17] K.B. Gerasimov, V.V. Boldyrev, “On mechanism of new phases formation during mechanical alloying of Ag-Cu, Al-Ge and Fe-Sn systems,” Mater. Res. Bull., vol. 31, pp. 1297–1305, 1996.
  • [18] Y.C. Kim, J.C. Lee, P.R. Cha, J.P. Ahn, E. Fleury, “Enhance glass forming ability and mechanical properties of new Cu-based bulk metallic glasses,” Mater. Sci. Eng., A, vol. 437, pp. 248–253, 2006.
  • [19] T. Spassov, P. Solsona, S. Surinach, M.D. Baro, “Optimisation of the ball-milling and heat treatment parameters for synthesis of amorphous and nanocrystalline Mg2Ni-based alloys,” J. Alloys Compd., vol. 349, pp. 142–254, 2003.
  • [20] S. Venkataraman, W. Loser, J. Eckert, T. Gemming, C. Mickel, P. Schulbert-Bischoff, N. Wanderka, L. Schultz, D.J. Sordelet, “Nanocrystal development in Cu47Ti33Zr11Ni8Si1 metallic glass powders,” J. Alloys Compd, vol. 415, pp. 162–169, 2006.
  • [21] S. Mula, S. Ghosh, S.K. Pabi, “Synthesis of an Al-based Al–Cr–Co–Ce alloy by mechanical alloying and its thermal stability,” Mater. Sci. Eng., A, vol. 472, pp. 208–213, 2008.
  • [22] R. Lei, M. Wang, H. Wang, S. Xu, “New insights on the formation of supersaturated Cu-Nb solid solution prepared by mechanical alloying,” Mater. Charact., vol. 118, pp. 324–331, 2016.
  • [23] C. Suryanarayana, M. G. Norton, “X-ray Diffraction: A Practical Approach,” Plenum Press, New York, 1998. 207.
  • [24] J. Guerrero-Paz, D. Jaramillo-Vigueras, “Comparison of grain size distributions obtained by XRD and TEM in milled FCC powders,” Nanostrcut Mater., vol. 11, pp. 1195-1204, 1999.
  • [25] J. N. R. Olvera, A. Martínez Janete, H. H. Hernandez, I. Orozco G., L. D. B. Arceo, “Microstructural characterization and thermodynamic analysis of MoZn produced by mechanical alloying,” J. Alloys Compd., vol. 696, pp. 329-337, 2017.
  • [26] S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, M. Gupta, “Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response,” Mater. Des., vol. 53, pp. 849–855, 2014.
  • [27] A. Kumar, G. K. Meenashisundaram, V. Manakari, G. Parande, M. Gupta, “Lanthanum effect on improving CTE, damping, hardness and tensile response of Mg-3Al alloy,” J. Alloys Compd., vol. 695, pp. 3612-3620, 2017.
  • [28] S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, “Effect of addition of mutually soluble and insoluble metallic elements on the microstructure, tensile and compressive properties of pure magnesium,” Mater. Sci. Eng., A, vol. 530, pp. 149–160, 2011.
  • [29] J. Zhu, X.H. Chen, L. Wang, W.Y. Wang, Z.K. Liu, J.X. Liu, X.D. Hui, “High strength Mg-Zn-Y alloys reinforced synergistically by Mg12ZnY phase and Mg3Zn3Y2 particle,” J. Alloys Compd., vol. 703, pp. 508-516, 2017.
  • [30] K.R. Ramkumar, S. Ilangovan, S. Sivasankaran, A. S. Alaboodi, Experimental investigation on synthesis and structural characterization of Cu-Zn-x wt%Al2O3 (x ¼ 0, 3, 6, 9 & 12%) nanocomposites powders through mechanical alloying,” J. Alloys Compd., vol. 688, pp. 518-526, 2016.
  • [31] C. Díaz-Guillén, E. E. Granda-Gutiérrez, G. Vargas-Gu tiérrez, M. R. Díaz-Guillén, J. A. Aguilar-Martínez, L. Álvarez-Contreras, “Effect of Nitriding Current Density on the Surface Properties and Crystallite Size of Pulsed Plasma-Nitrided AISI 316L,” J. of Mat. Sci. and Chem. Eng., vol. 3, pp. 45-51, 2015.