Elektromanyetik alan teorisinde nümerik tekniklerin görsel programlama yöntemleriyle uygulanması

Elektrik-Elektronik mühendisliğinin iki alt teorisinden biri olan alan teorisi lisans öğrencilerinin algılamada güçlük çektikleri bir konudur. Lisans döneminde elektromanyetik alanlar kapsamında alan teorisi, parçalı diferansiyel denklemler ve integral yöntemlerinin kullanıldığı analitik yöntemlerle anlatılmaktadır. Alan problemlerinin matematiksel modelinin çıkartılması esasına dayalı olan analitik çözüm yöntemleri lisans öğrencilerinin matematik ve fizik altyapılarına bağlı olarak algılama güçlüklerinin yaşanmasına neden olabilmektedir. Basit modellerde uygulanabilir olan analitik yöntemler daha karmaşık modellerde uygulanabilirliğini yitirmektedir. Bu durumda da daha karmaşık denklemleri çözmek için nümerik yöntemlere başvurulması uzunca zamandır kullanılan bir yöntemdir. Bu çalışmada, alan teorisi kapsamında lisans üstü öğrenim düzeyinde kullanılan bazı nümerik yöntemlerin web tabanlı grafik arayüzlü uygulamalarının, lisans öğrencilerinin bilgisayar programlama kabiliyetleri de göz önünde bulundurularak öğrencilerce geliştirilmesi ve algılama güçlüğü yaşanan alan teorisi çözümlerinin kalıcı öğrenimi sağlayabilmesi hedeflenmiştir.

Implementation of visual programming methods for numerical techniques used in electromagnetic field theory

Field theory is one of the two sub-field theories in electrical and electronics engineering that for creates difficulties for undergraduate students. In undergraduate period, field theory has been taught under the theory of electromagnetic fields by which describes using partial differential equations and integral methods. Analytical methods for solution of field problems on the basis of a mathematical model may result the understanding difficulties for undergraduate students due to their mathematical and physical infrastructure. The analytical methods which can be applied in simple model lose their applicability to more complex models. In this case, the numerical methods are used to solve more complex equations. In this study, by preparing some field theory‘s web-based graphical user interface numerical methods of applications it has been aimed to increase learning levels of field theory problems for undergraduate and graduate students while taking in mind their computer programming capabilities.

___

  • P. Paultre, E. Lapointe, C. Carbonneau and J. Proulx, "LAS: A Programming Language and Development Environment for Learning Matrix Structural Analysis", Computer Applications in Engineering Education, vol. 24, no. 1, pp. 89-100, 2016.
  • H. Gould, J. Tobochnik and W. Christian, An Introduction to Computer Simulation Methods, Third Edition, ISBN: 0-8053- 7758-1, 2011.
  • M.N.O. Sadiku, Numerical Techniques in Electromagnetics, CRC Press LLC, 2001.
  • F. Sagnard, Educational Graphical Interfaces to Learn About Radiation and Propagation of Electromagnetic Waves, IEEE Transactions on Education, vol. 47, no. 3, pp. 389-396, 2004.
  • Y.J. Dori and J. Belcher, How Does Technology-Enabled Active Learning Affect Undergraduate Students’ Understanding of Electromagnetism Concepts?, The Journal of The Learning Sciences, vol. 14, no. 2, pp. 243-279, 2005.
  • Y.J. Dori, J. Belcher, M. Bessette, M. Danziger, A. McKinney and E. Hult, Technology for active learning, Elseiver, ISSN:1369 7021, 2003.
  • J. Guisasola, J.M. Almudi, L. Jose and J.L. Zubimendi, Difficulties in Learning the Introductory Magnetic Field Theory in the First Years of University, Wiley Periodicals, Sci Ed 88:443 464, 2004.
  • Y. Chen and R. Xu, Analysis of the RF and noise performance of junctionless MOSFETs using Monte Carlo simulation, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 22, pp. 822-833, 2014.
  • J. Gilbert, Visualization in Science Education, Springer, 2005.
  • J. Leppävirta, H. Kettunen and A. Sihvola, Complex Problem Exercises in Developing Engineering Students’ Conceptual and Procedural Knowledge of Electromagnetics, IEEE Transactions on Education, vol. 54, no. 1, pp. 63-66, 2011.
  • J.R. Cardoso, V.C. Silva, N.M. Abe and L.N. Rossi, Approach to Teaching the Finite Element Method Applied to Electromagnetic Problems with Axial Symmetry to Electrical Engineering Students, Computer Applications in Engineering Education, vol. 7, no. 3, pp. 133-145, 1999.
  • K. Zuza, J.M. Almudi, A. Leniz and J. Guisasola, Addressing students’ difficulties with Faraday’s law: A guided problem solving approach, Physics Education Research, vol. 10, no. 1, 2014.