Değişken hızlı rüzgâr türbinlerinde kanat ucu hız oranı tabanlı maksimum güç izleme denetimi; kapsamlı bir tasarım

Rüzgârdan elektrik enerjisi üretmek için kullanılan rüzgâr türbinlerinin en ilkel denetim yöntemi, sabit hızlı denetim yöntemidir. Bu yöntemle, türbin giriş gücünün maksimum oranda şebekeye aktarılması mümkün değildir. Bu nedenle Maksimum Güç İzleme (MGİ) şemaları önerilmiştir. MGİ yapabilmek için rüzgâr hızının her farklı değerinde, pervane farklı bir hızla dönmelidir. Bu durum MGİ tabanlı sistemlere Değişken Hızlı Rüzgâr Türbini (DHRT) sistemleri denilmesine yol açmıştır. DHRT sistemlerinde türbin giriş gücü maksimum güce yakın oranlarda şebekeye aktarılabilmektedir. DHRT sistemlerinin MGİ tabanlı denetimi söz konusu olduğunda iki önemli işlem öne çıkar. Bunlar MGİ noktasının anlık olarak saptanması ve izlenmesidir. Bu çalışmada kanat ucu hız oranı tabanlı maksimum güç izleme şeması kullanılarak, Sabit Mıknatıslı Senkron Generatörlü (SMSG) bir DHRT sistemi ile rüzgârda bulunan güç değeri maksimum oranda arka arkaya bağlı çevirici sistem üzerinden şebekeye aktarılmaktadır. Ayrıca fiziksel bir rüzgâr türbini modellenmiş ve benzetimi yapılmıştır. Sonuçlar zamanla değişen bir MGİ noktasının yüksek performansla izlendiğini göstermektedir.

Tip speed ratio based maximum power tracking control of variable speed wind turbines; a comprehensive design

The most primitive control method of wind turbines used to generate electric energy from wind is the fixed speed control method. With this method, it is not possible that turbine input power is transferred to grid at maximum rate. For this reason, Maximum Power Tracking (MPT) schemes are proposed. In order to implement MPT, the propeller has to rotate at a different speed for every different wind speed. This situation has led MPT based systems to be called Variable Speed Wind Turbine (VSWT) systems. In VSWT systems, turbine input power can be transferred to grid at rates close to maximum power. When MPT based control of VSWT systems is the case, two important processes come into prominence. These are instantaneously determination and tracking of MPT point. In this study, using a Maximum Power Point Tracking (MPPT) method based on tip speed ratio, power available in wind is transferred into grid over a back to back converter at maximum rate via a VSWT system with permanent magnet synchronous generator (PMSG). Besides a physical wind turbine simulator is modelled and simulated. Results show that a time varying MPPT point is tracked with a high performance.

___

  • G. J. Herbert, S. Iniyan, E. Sreevalsan and S. Rajapandian. (2007, Aug.). A review of wind energy technologies. Renewable and sustainable energy Reviews. Renewable and Sustainable Energy Reviews. 11(6). pp. 1117-1145. Available: http://www.sciencedirect.com/science/ar ticle/pii/S136403210500095X
  • G. Raina, and O. P. Malik. (1983, Dec.). Wind energy conversion using a selfexcited induction generator. Power Apparatus and Systems, IEEE Transactions on Power Apparatus and Systems. (12). pp. 3933-3936. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=4111922
  • K. Natarajan, A.M. Sharaf, S. Sivakumar and S. Naganathan. (1987, Sept.). Modeling and control design for wind energy power conversion scheme using self-excited induction generator. IEEE Transactions on Energy Conversion. 2(3). pp. 506-512. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=5527429
  • P. Novak, T. Ekelund, I. Jovik and B. Schmidtbauer. (1995, Aug.). Modeling and control of variable-speed windturbine drive-system dynamics. Control Systems, IEEE. 15(4), pp. 28-38. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=408463
  • M. A. Mayosky and G. I. Cancelo. (1999, Jul.). Direct adaptive control of wind energy conversion systems using Gaussian networks. Neural Networks, IEEE Transactions on, 10(4). pp. 898- 906. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=774245
  • M. Mauri, L. Frosio and G. Marchegiani. "Integration of Hybrid Distributed Generation Units in Power Grid" in Electrical Generation and Distribution Systems and Power Quality Disturbances, Prof. Gregorio Romero (Ed.), (2011). ISBN: 978-953-307-329-3
  • A. Lin. (2012, January). Research on Voltage Stability in Grid-Connected Large Wind Farms. In Advanced Materials Research. 354. pp. 989-992.
  • J. D. Duan and R. Li, L. An. (2012, January). Study of Voltage Stability in Grid-Connected Large Wind Farms. In Advanced Materials Research. 433, pp. 1794-1801.
  • Sarika D. Patil. (2012). Improvement of Power Quality Considering Voltage Stability in Grid Connected System by FACTS Devices. International Journal of Electrical and Electronics Engineering. 1(3). pp. 14-19.
  • S. M. Muyeen, S. Shishido, M. Ali, R. Takahashi, T. Murata and J. Tamura. (2008). Application of energy capacitor system to wind power generation. Wind energy. 11(4), pp. 335- 350. Available: http://onlinelibrary.wiley.com/doi/10.10 02/we.265/epdf
  • M. H. Ali, J. Tamura and B. Wu. "SMES strategy to minimize frequency fluctuations of wind generator system" In Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE. Orlando USA. (2008, November). (pp. 3382-3387). IEEE.
  • M. H. Ali, B. Wu and R. A. Dougal. (2010, April). An overview of SMES applications in power and energy systems. Sustainable Energy, IEEE Transactions on. 1(1). pp. 38-47. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=5433171
  • L. Wang, J. Y. Yu and Y.T. Chen. (2011,Oct.). Dynamic stability improvement of an integrated offshore wind and marine-current farm using a flywheel energy-storage system. Renewable Power Generation, IET, 5(5), pp. 387-396. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=6009135
  • X. Li, D. Hui and X. Lai. (2013, April). Battery energy storage station (BESS)- based smoothing control of photovoltaic (PV) and wind power generation fluctuations. Sustainable Energy, IEEE Transactions on, 4(2), pp. 464-473. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=6473871
  • F. W. Lanchester. (1915, May). A contribution to the theory of propulsion and the screw propeller. Journal of the American Society for Naval Engineers, 27(2). pp. 509-510. Available: http://onlinelibrary.wiley.com/doi/10.11 11/j.1559-3584.1915.tb00408.x/epdf
  • D. Bang, H. Polinder, G. Shrestha, J. A. Ferreira, "Review of generator systems for direct-drive wind turbines", Presented at the EWEC (Europan Wind Energy Conference Exhibition), Brussels, Belgium, (2008, March), pp. 1-10.
  • A. Betz. (1920). Das maximum der theoretisch möglichen ausnützung des windes durch windmotoren. Zeitschrift für das Gesamte Turbinewesen. 26. pp. 307-309.
  • S. Heier, "Grid integrationof wind energy conversion systems", Wiley, Chichester, UK, (1998).
  • Z. Alnasir and M. Kazerani. (2013, Dec.). An analytical literature review of standalone wind energy conversion systems from generator viewpoint. Renewable and Sustainable Energy Reviews. 28. pp. 597-615. Available: http://www.sciencedirect.com/science/ar ticle/pii/S1364032113005674
  • M. A. Khan, P. Pillay and K. D. Visser. (2005, Sept.). On adapting a small pm wind generator for a multiblade, high solidity wind turbine. Energy Conversion, IEEE Transactions on. 20(3). pp. 685-692. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=1495542
  • J. R. Bumby and R. Martin. (2005, Sept.). Axial-flux permanent-magnet air-cored generator for small-scale wind turbines. In Electric Power Applications, IEE Proceedings. 152(5). pp. 1065-1075. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=1516795
  • G. K. Singh. (2004, May). Self-excited induction generator research—a survey. Electric Power Systems Research, 69(2). pp. 107-114. Available: http://www.sciencedirect.com/science/ar ticle/pii/S0378779603002037
  • R. C. Bansal, T. S. Bhatti, and D. P. Kothari. (2003, Sept.). Bibliography on the application of induction generators in nonconventional energy systems. Energy Conversion, IEEE Transactions on. 18(3). pp. 433-439. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=1223612
  • P.K. Shadhu Khan and J.K. Chatterjee. (1999). Three-phase induction generators: a discussion on performance. Electric Machines & Power Systems, 27(8). pp. 813-832. Available: http://www.tandfonline.com/doi/abs/10. 1080/073135699268867
  • M. Ermiş, H. B. Ertan, M. Demirekler, B. M. Sarıbatır, Y. Üçtuǧ, M. E. Sezer and I. Çadırcı, (1992, January). Various induction generator schemes for windelectricity generation. Electric Power Systems Research. 23(1). pp. 71-83. Available: http://www.sciencedirect.com/science/ar ticle/pii/037877969290036Z
  • S. Müller, M. Deicke and R. W. De Doncker. (2002, May/June). Doubly fed induction generator systems for wind turbines. Industry Applications Magazine. IEEE. 8(3). pp. 26-33. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=999610
  • R. Datta and V. T. Ranganathan. (2002, Sept.). Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes. Energy Conversion. IEEE Transactions on. 17(3). pp. 414- 421. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=1033974
  • L. Holdsworth, X. G.Wu, J. B. Ekanayake and N. Jenkins. (2003, May). Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances. In Generation, Transmission and Distribution, IEE Proceedings. 150(3). pp. 343-352. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=1201854
  • S. Grabic and V. Katic,"A comparison and trade-offs between induction generator control options for variable speed wind turbine applications" In Industrial Technology, 2004. IEEE ICIT'04, (Vol. 1, pp. 564-568), Hammamet Tunisia, (2004, December).
  • R. Pena-Alzola, M. Liserre, F. Blaabjerg, M. Ordonez and Y. Yang. (2014, Nov.). LCL-filter design for robust active damping in grid-connected converters. Industrial Informatics, IEEE Transactions on, 10(4), pp. 2192-2203. Available: http://ieeexplore.ieee.org/stamp/stamp.js p?tp=&arnumber=6917012