Doğalgaz boru hatlarında dalga bariyeri olarak yapay kaya dolgusunun dalga yayılışına etkisi

Depremler yeryüzünün büyük bir kesimini etkileyerek mühendislik yapılarına ciddi hasarlar vermekte ve önemli ekonomik kayıplara yol açmaktadır. Bu yüzden, deprem etkisi altındaki boru hatlarının dayanımı ve güvenliği hayati öneme sahiptir. Zemin titreşimlerinin yayılma alanında ve korunacak yapı çevresinde azaltmak için yatay konumlandırılmış dalga bariyer uygulamaları inşaat mühendisliği çözümleri arasında yer almaktadır. Bu çalışmada yapı-zemin etkileşimi de dikkate alınarak 1999 Kocaeli depreminden kaynaklanan titreşim etkilerinin azaltılması için zeminin radyasyon sönümünü ifade eden enerji yutucu sınırları ve doğrusal olmayan malzeme özelliklerini de içeren bir nümerik model geliştirilmiştir. Geliştirilen bu model yardımıyla dalga bariyer sisteminde farklı kontrol parametrelerinin yalıtım etkisi kapsamlı parametrik çalışmalar yapılarak elde edilmiştir. Elde edilen sonuçlar dalga engelleyici yapay kaya dolgusunun titreşim etkilerinin azaltılmasında %70 mertebesinde etkili olduğunu ve bu tür problemler çözüm olarak gelecekte uygulanabileceğini göstermektedir.

Effect of artificial rock as a wave impeding barrier for wave propagation in pipeline

Earthquakes have destructive influences onto lifeline engineering and especially leading to considerable economic loss to the underground structure. Underground structures are significant unit of lifeline engineering. . Applying horizontal wave barriers is used in civil engineering as an alternative solution to reduce the soil vibrations in the wave propagation region and surrounding of the structures to be protected. In this study, discrete computer model including non-linear soil conditions as well as radiation damping is improved for testing corresponding wave propagation of earthquake vibrations in the soil under 1999 Kocaeli earthquake strong ground motion and mitigation of buried pipeline responses. Extensive parametric investigations by using the developed numerical model for isolation systems have been executed to conceive the influence of different controlling parameters on the screening efficiency. Results indicated that WIB are very promising as a cut off frequency isolators by reduction of * 70% and a promising candidate for future application in the field.

___

  • [1] S. Takada, N. Hassani ve K. Fukuda, "A new proposal for simplified design of buried steel pipes crossing active faults", Earthquake Engineering & Structural Dynamics, 30, 1243- 1257, 2001.
  • [2] P. Vazouras, S.A. Karamanos ve P.D. Dakoulas, "Mechanical behavior of buried steel pipes crossing active strike-slip faults", Soil Dynamics and Earthquake Engineering, 41(2012), 164- 180, 2012.
  • [3] R. Bilham, P. Doyle, R. Evans, P. Greening, R. May, A. Stewart ve dig., " TheKocaeli, Turkey earthquake of 17 August 1999a field report by EEFIT", Earthquake engineering field investigation team institution of structural engineers, Dina D'Ayala (editör), MatthewFree(editör), 2003.
  • [4] J. Eidinger, M. M,O'Rourke ve J. Bachhuber, "Performance of a pipeline at a fault crossing", In: Proceedings of 7th U.S.National Conference on Earthquake Engineering, Oakland, California, 2002.
  • [5] Y.W. Choo, T.H. Abdoun, M.J. O'Rourke ve D. Ha. "Remediation for buried pipeline systems under permanent ground deformation" Soil Dynamics and Earthquake Engineering, 27 (12), 1043-55, 2007.
  • [6] W.J. Hall ve T.D. O'Rourke, "Seismic behavior and vulnerability of pipelines", Lifeline earthquake engineering, M. A. Cassaro, ed., American Society of Civil Engineers, New York, 761-773, 1991.
  • [7] H. Liu ve E. Song, "Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations", Computers and Geotechnics, 32(4), 223-244, 2005.
  • [8] D.K. Karamitros, G.D. Bouckovalas ve G.P. Kouretzis, "Stress analysis of buried steel pipelines at strike-slip fault crossings", Soil Dynamics and Earthquake Engineering, 27(3), 200-211, 2007.
  • [9] T.H. Abdoun, D. Ha, M.J. O'Rourke, M.D. Symans, T.D. O'Rourke, M.C. Palmer ve diğ., "Factors influencing the behavior of buried pipelines subjected to earthquake faulting", Soil Dynamics and Earthquake Engineering, 29(3), 415-427, 2009.
  • [10] P. Vazouras, S.A. Karamanos ve P.D. Dakoulas, "Finite element analysis of buried steel pipelines under strike-slip fault displacements", Soil Dynamics and Earthquake Engineering, 30(11), 1361-1376, 2010.
  • [11] F. Göktepe, H.S. Küyük ve E. Çelebi, "Analysis of Embedded Pipeline Induced by Earthquake Excitation under Various Soil Material Types" The 2001 Bhuj Earthquake and Advances in Earthquake Science, Gandhinagar, India, 22-27 January 2011 (Only abstract published).
  • [12] F. Göktepe, H.S. Küyük ve E. Çelebi, "Effect of Wave Impeding Barrier Depth on Buried Pipeline", The Online Journal of Science and Technology, (TOJSAT), 3(4), 55-63, 2013.
  • [13] M.J. O'Rourke ve X. Liu, "Seismic Design of Buried and Offshore Pipelines", MCEER- 12- MN04, 2011.
  • [14] V. Chaudhari, V.D.K. Kumar ve R.P. Kumar, "Finite element analysis of buried continuous pipeline subjected to fault motion", International Journal of Structural Engineering, 4(4), 314- 331, 2013.
  • [15] X. Xie, M.D. Symans, M.J. O'Rourke, T.H. Abdoun, T.D. O'Rourke, M.C. Palmer ve diğ., "Numerical Modeling of Buried HDPE Pipelines Subjected to Normal Faulting: A Case Study", Earthquake Spectra, 29(2), 609-632, 2013.
  • [16] F. Göktepe, H.S. Küyük ve E. Çelebi, "Efficiency of wave impeding barrier in pipeline construction under earthquake excitation using non-linear finite element analysis", SADHANAAcademy Proceedings in Engineering Sciences, 39(2), 419-436, 2014.
  • [17] B. Akbas, M. O'Rourke, E. Uckan, J. Shen ve M. Caglar, "Performance-baseddesıgn of burıed steelpıpes at fault crossıngs", In: Proceedings of the ASME 2015 pressure and vessels & piping conference, PVP2015-45662 PVP 2015, Boston, MA, USA, July 19-23, 2015.
  • [18] E. Uckan, B. Akbas, J. Shen, W. Roud, F. Paolacci ve M. O'Rourke, "A simplified analysis model for determining the seismic response of buried steel pipes at strike-slip fault crossings", Soil Dynamics and Earthquake Engineering, 75(2015), 55-65, 2015.
  • [19] Y.H. Pao ve C.C. Mow, "Scattering of plane compressional waves by a spherical obstacles", Journal of Applied Physics, 34, 493-4999, 1963.
  • [20] J. Aboudi, "Elastic waves in half-space with this barrier", Journal of the Engineering Mechanics Division, ASCE, 99(1), 69-83, 1973.
  • [21] M. Fuyuki ve Y. Matsumoto, "Finite difference analysis of rayleigh wave scattering at a trench", Bulletin of Seismological Society of America, 70(6), 2051-2069, 1980.
  • [22] E. Kausel, "Thin-Layer method: formulation in the time domain", International Journal for Numerical Methods in Engineering, 37, 927- 941, 1994.
  • [23] C. Bode, R. Hirschauer ve S.A. Savadis, "Soil- structure interaction in the time domain using half-space green's functions", Soil Dynamics and Earthquake Engineering, 22 (4), 283-295, 2002.
  • [24] R. Hildebrand, "Effect of soil stabilization on audible band railway ground vibration", Soil Dynamics and Earthquake Engineering, 24, 411-424, 2004.
  • [25] C.J.C. Jones ve J.R. Block, "Prediction of ground vibration from freight trains", Journal of Sound and Vibration, 193(1), 205-213, 1996.
  • [26] G. Pflanz, K. Hashimoto ve N.Chouw, "Reduction of structural vibrations induced by a moving load", Journal of Applied Mechanics, 5, 555-563, 2002.
  • [27] M.H. El Naggar ve A.G. Chehab, "Vibration barriers for shock-producing equipment", Canadian Geotechnical Journal, 42, 297-306, 2005.
  • [28] M. Buonsanti, F. Cirianni, G. Leonardi, A. Santini ve F. Scopelliti, "Mitigation of railway traffic induced vibrations: the influence of barriers in elastic half space", Hindawi Publishing Corporation, Advances in Acoustics and Vibration, 2009.
  • [29] I.L. Howard ve K.A. Warren, "Finite-element modeling of instrumented flexible pavements under stationary transient loading", Journal of Transportation Engineering, 135(2), 53-61, 2009.
  • [30] C.H. Chiang ve P.H. Tsai, "A Numerical Study of the Screening Effectiveness of Open Trenches for High-Speed Train-Induced Vibration", Hindawi Publishing Corporation Shock and Vibration, 2014 (2014), 1-11, 2014.
  • [31] N. Chouw, R. Le ve G. Schmid, "Propagation of vibration in a soil layer over bedrock", Engineering Analysis with Boundary Elements, 8(3), 125-131, 1991.
  • [32] N. Chouw, "Wave propagation from the source via the subsoil into the building", Proceedings of the 1st. International Workshop Wave'94 and Reduction of Vibrations, Berg-Verlag GmbH, Bochum, Germany, 33-46. 1994.
  • [33] H. Takemiya, "Lineside ground vibrations induced by high-speed train passage", Workshop on Effect of High-Speed Vibration on Structures and Equipment, Dept. Civil Eng., Nat. Cheng Kung Univ., Tainan, Taiwan, R.O.C., 43-49, 1998a.
  • [34] H. Takemiya, "Paraseismic behavior of wave impeding block measured for ground vibration reduction", Workshop on Effect of High-Speed Vibration on Structures and Equipment, Dept. Civil Eng., Nat. Cheng Kung Univ., Tainan, Taiwan, R.O.C., 51-56, 1998b.
  • [35] N. Chouw ve G. Pflanz, "Impediment of wave propagation from a moving source via the subsoil into the building", Wave 2003, Chouw&Schmid, Balkema, Rotterdam, 101-111, 2003.
  • [36] E. Çelebi ve F. Göktepe, "Non-linear 2-D FE analysis for the assessment of isolation performance of wave impeding barrier in reduction of railway-induced surface waves", Construction and Building Materials, 36 (2012), 1-13, 2012.
  • [37] F. Göktepe ve E. Çelebi, "Vibration reduction on surrounding buildings induced by high speed trains", Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics (VEESD 2013), C. Adam, R. Heuer, W. Lenhardt & C. Schranz (eds), Vienna, Austria, 2013.
  • [38] S. Ahmad ve T.M. Al-Hussaini, "Simplified design for vibration screening by open and infilled trenches", Journal of Geotechnical Engineering, 117(1), 67-88, 1991.
  • [39] R. Klein, H. Antest ve D.L. Honedect, "Efficient 3D modeling of vibration isolation by open trenches", Computers and Structures, 64(1-4), 809-817, 1997.
  • [40] E. Forchap ve B. Verbic, "Wave propagation and reduction of foundation vibrations", Berg-Verlag GmbH, Bochum, 165-178, 1994.
  • [41] M. Adam ve N. Chouw, "Reduction of footing response to man-made excitations by using a wave impeding barrier", Journal of Applied Mechanics, 4, 423-431, 2001.
  • [42] A. Saikia, "Numerical study on screening of surface waves using a pair of softer backfilled trenches", Soil Dynamics and Earthquake Engineering, 65, 206-213. 2014.
  • [43] R. B. J. Brinkgreve, R. Al-Khoury, K. J. Bakker, P.G. Bonnier, P.J.W. Brand, W. Broere, H.J. Burd, G. Soltys, P. A. Vermeer ve D. D. Haag, "Plaxis finite element code for soil and rock analyses", Published and distributed by A.A. Balkema Publisher, The Netherlands, 2002.
  • [44] R.L. Kuhlemeyer ve J. Lysmer, "Finite element method accuracy for wave propagation problems", Journal of Soil Mechanics and Foundations Division, ASCE, 99 (SM5), 421- 427, 1973.
  • [45] J. Lysemer, T. Ukada, C.F. Tsai ve H.B.Seed, "FLUSH-A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems", Report No: EERC 75/30, Earthquake Engineering Research Center, University of California, Berkeley, 1975.
  • [46] I.M. Smith ve D.V. Griffith, "Programming the finite element method", 2nd edition, John Wiley&Sons, Chisester, U.K., 1982.
  • [47] N. K. Gamber, "Shallow foundation systems response to blast loading", A Thesis Presented to The Faculty of the Fritz J and Dolores H Russ College of Engineering and Technology, Ohio University, In Partial Fulfillment Of the Requirement for the Degree Master of Science, Athens, 2004.
  • [48] G. A. Zaneta, "Analysis NATM tunnel responses due to earthquake loading in various soils", Mining Technology Bulletin-Institute of Mining Science and Technology, 2(3), 9-17, 2006.