Çevresel Kirletici Etofenproks'un Zebra Balıklarında (Danio rerio) Subletal Genotoksik Etkileri

Bu çalışmada ekotoksikolojik araştırmalarda model organizmalardan olan zebra balığı (Danio rerio), etofenproksun sucul ekosistemler üzerindeki öldürücü etkilerini belirlemek için kullanılmıştır. Ester olmayan sentetik piretroid etofenproks (2-(4-etoksifenil)-2-metilpropil 3-fenoksibenzileter phenoxybenzylether), haşere kontrol programları ile direkt su aracılığı ile ya da dolaylı olarak yağmur suları ve yüzey suları ile vücuda alınabilir. Deney grupları 96. saat LC50 değeri 1/10 (8.1 μg/L) ve 1/100 (0.81 μg/L) dozunda etofenproksa 48 ve 96 saat boyunca maruz bırakılmıştır. Oksidatif DNA hasarını değerlendirmek için tüm vücut zebra balıkları homojenize edilerek DNA izolasyonu yapıldı. Daha sonra DNA örnekleri hidrolize edilerek, oksidatif hasar 8-hidroksi-2’deoksiguanozin (8OHdG, ng/g doku) olarak enzim immun yöntem ile ölçülmüştür. Kontrol grubu ile karşılaştırıldığında her iki grupta, düşük ve yüksek her iki dozda 8OHdG düzeyleri yüksek gözlendi. DNA hasar düzeyi 96. saat yüksek ve düşük doz etofenproksa maruz bırakılan grup ile 48. saat etofenproksa maruz kalan grup ile karşılaştırıldığında her iki dozda istatistiksel olarak anlamlı yüksek bulundu. Sonuç olarak subletal konsantrasyonlarda etofenproksa maruziyetin zebra balıklarında akut genotoksik etki gösterdiği ve doku hasarına yol açtığı, maruziyet süresinin devamı ile tamir mekanizmalarının etkin olabileceği düşünülmektedir.

The Sublethal Genotoxic Effects of Environmental Pollutants of Etofenprox on Zebrafish (Danio rerio)

ecotoxicological research, was used to determine the sublethal effects of etofenprox on aquatic ecosystems. Non-ester synthetic pyrethroid etofenprox (2-(4-ethoxyphenyl)-2-methylpropyl 3-phenoxybenzylether) can be taken into the body either by direct water or indirectly with rainwater and surface waters of pest control programs. Experimental groups were exposed to etofenprox for 48 and 96 hours at the 96th hour LC50 1/10 (8.1 μg/L) and 1/100 (0.81 μg/L) dose. In order to evaluate genomic oxidative DNA damage, whole body zebra fish were homogenized and DNA isolation was performed. DNA samples are then hydrolyzed and the oxidative damage was measured by commercial kit as EIA. Compared to the control group, low and high doses of 8OHdG in both groups were high. DNA damage level was found to be statistically significantly higher in both doses compared to the 96th hour group exposed to high and low dose etofenprox and the 48th hour group exposed to etofenprox. As a result, it is suggested that the sublethal concentrations of etofenprox has acute genotoxic effect in zebra fish and causes tissue damage and related with the duration of exposure repair mechanisms may be effective.

___

  • 1. FAO Specifications and Evaluations for Agricultural Pesticides. Etofenprox. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Etofenprox07.pdf (Last accessed: November 2019)
  • 2. Sreehari U, Mittal PK, Razdan RK, Dash AP, Ansari MA. Impact of etofenprox (Vectron 20 WP) indoor residual spray on malaria transmission. J Med Res 2009; 129 (5): 593-8.
  • 3. Vasquez ME, Gunasekara AS, Cahill TM, Tjeerdema RS. Partitioning of etofenprox under simulated California ricegrowing conditions. PestManag Sci 2010; 66(1):28-34.
  • 4. USEPA. United States Environmental Protection Agency Pesticides: Registration Review Etofenprox Summary Document (7407), 2007. https://archive.epa.gov/oppsrrd1/ registration_review/web/html/reg_review_status.html (Erişim tarihi: 24.02.2020).
  • 5. Yameogo L, Traore K, Back C, Hougard JM, Calamari D. Risk assessment of etofenprox (vectron®) on non-target aquatic fauna compared with other pesticides used as Simulium larvicide in a tropical environment. Chemosphere 2001; 42 (8): 965-974.
  • 6. Zhang ZY, Yu XY, Wang DL, Yan HJ, Liu XJ. Acute toxicity to zebrafish of two organophosphates and four pyrethroids and their binary mixtures. Pest Man Sci 2010; 66 (1): 84-89.
  • 7. WHO. WHO Specifications and Evaluations for Public Health Pesticides. Etofenprox. http://www10.who.int/pqvector-control/prequalified-lists/ETOFENPROX.pdf (Last accessed: November 2019)
  • 8. De Lorenzo ME, De Leon RG. Toxicity of the insecticide etofenprox to three life stages of the grass shrimp, Palaemonetes pugio. Archives of Environ Contam Toxicol 2010; 58 (4): 985-990.
  • 9. Benli AC. The influence of etofenprox on narrow clawed crayfish (Astacus leptodactylus Eschscholtz, 1823): Acute toxicity and sublethal effects on histology, hemolymph parameters, and total hemocyte counts. Environ Toxicol 2015;30(8):887-894.
  • 10. Sancho MD, Ferrando M, Gamon, Andreu-Moliner E. Uptake and elimination kinetics of a pesticide in the liver of the European eel, J. Environ.Sci Health B 1998; (33):83–98.
  • 11. Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest 2012; (122): 2337-43.
  • 12. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, & Kyrylenko, S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 2016;35(2):186-2.
  • 13. Valavanidis A, Vlachogianni T, Constantinos F. 8-Hydroxy-2′deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C 2009; 27 (2):120-39.
  • 14. Floyd, R. A., Watson, J. J., Wong, P. K., Altmiller, D. H., & Rickard, R. C. (1986). Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Radical Research Communications, 1(3), 163–172.
  • 15. Hamilton, M. L., Guo, Z. M., Fuller, C. D., Van Remmen, H., Ward, W. F., Austad, S. N., et al. (2001). A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Research, 29, 2117–2126.
  • 16. Yndestad A, Neurauter CG, Oie E, Forstrom RJ, Vinge LE, Eide, L., & Bjørås, M. Up-regulation of myocardial DNA base excision repair activities in experimental heart failure. Mutat Res 2009; 666(1-2): 32-8.
  • 17. Richter C. Free radical mediated DNA oxidation. In: Wallace KB, editor. Free Radical Toxicology. Target Organ Toxicology Series. Washington: Taylor & Francis, 1997:89-111.
  • 18. Dizdaroglu M. Chemical determination of free radicalinduced damage to DNA. Free Radical Bio Med 1991;10(3-4): 225-42.
  • 19. Loft S, Hogh Danielsen P, Mikkelsen L., Risom L, Forchhammer L, Moller P. Biomarkers of oxidative damage to DNA and repair. Biochem Soc Trans 2008; 36 (5): 1071- 76.
  • 20. Jia, Y., Xia, X., Zhang, W., W., Ji, X. L., Chen, J. J., Li, L., & Chang, Z. J. Characterization and expression of dax1 during embryonic and gonad development in the carp (Cyprinus carpio). Turk J Biochem 2017; 42(2),139-148. doi:10.1515/tjb-2016-0115.
  • 21. Xu GW, Yao QH, Weng QF, Su BL, Zhang X, Xiong JH.Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J Pharmaceut Biomed 2004; 36(1): 101-4.
  • 22. Hojo Y, Shiraki A, Tsuchiya T, Shimamoto K, Ishii Y, Suzuki K, Mitsumori K. Liver tumor promoting effect of etofenprox in rats and its possible mechanism of action. J Toxicol Sci. 2012;37(2):297-306.
  • 23. Teodoro M, Briguglio G, Fenga C, Costa C. Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicology Reports. 2019 Jun 7; 6: 564-570.
  • 24. Jabłońska-Trypuć A., Wołejko E., Wydro U., Butarewicz A. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor. J. Environ. Sci. Health B. 2017; 52:483–494.
  • 25. Benli ACK, Şahin D, Koçak B, Sepici Dinçel A, Karbarile maruz kalan tatlı su istakozlarında (Astacus leptodactylus Eschscholtz, 1823) antioksidan enzim düzeyleri. Turk J Bioch 2012; 37(2): 162-166.