Hastalıklar ve Antik DNA: Dün ve Bugün

Geçmişten günümüze gelen antropolojik ve arkeolojik materyallerden DNA eldesi ile birlikte ortaya çıkan antik DNA (aDNA) kavramıyla antropogenetik-arkeogenetik gibi yeni bilim dalları ve çalışma alanları hayatımıza girmiştir. İnsan genomunda hastalıklar ile ilişkilendirilmiş genler ve gen bölgelerinin de antik DNA ile çalışılmaya başlanması, hastalıkların geçmişten günümüze olan yolculuğunu ve geçirdiği değişimleri farklı açılardan anlamamızı sağlamıştır. Bu sayede hastalıklara yaklaşımda, tanı ve tedavide yeni bakış açıları ortaya çıkmaktadır. Denisova insanı, neandertal insanı ve modern insan genomları dizinlenerek elde edilen bilgiler birbirleriyle karşılaştırılmakta, insan (homo) türleri arasındaki akrabalık ilişkileri belirlenebilmektedir. Beslenme farklılıkları, yaşanılan dönem ve çevreye bağlı olarak hastalıklara yatkınlıkta değişiklikler; talasemi gen mutasyonlarının ortaya çıktığı zaman ile plasmodium salgınlarının ilişkisi; günümüzün en sık karşılaşılan sağlık sorunlarından aterosklerotik kalp hastalığının sadece sedanter yaşam ile ilişkili olmayıp eski çağlarda da görülebildiği; immünolojik ve romatolojik hastalıkların her çağda yaygın olduğu da antik DNA çalışmaları ile gösterilmiştir.

Diseases and Ancient DNA: Past and Today

From the anthropological and archaeological materials coming from the past to the present day, new scientific fields such as anthropogenetics-archaeogenetics have come into our lives. The study of the human genome and genes, regions associated with diseases in ancient DNA has been able to provide the better understanding the paths, the changes and the interactions in human diseases from different perspectives. In this way, new perspectives have emerged in approach to diseases, diagnosis and treatment. Denisovan, neanderthal and modern human genomes are sequenced,the resultant information is compared with each other and kinship relations between human (homo) kinds are determined. Nutritional changes and lifestyle depending on the period and environment, change in susceptibility to diseases. Relationship between the occurrence of thalassemia gene mutations and the outbreaks of plasmodium; atherosclerotic heart disease, which is one of the most common health problem nowadays, is not only related to sedentary lifestyle but also can be seen in ancient times; immunological and rheumatological diseases are also common in all historical ages. All these results have been shown with aDNA studies

___

  • 1. Abi-Rached L. ve ark. (2011): The shaping of modern human immune systems by multiregional admixture with archaic humans, Science, 334:89-94.
  • 2. Allam A.H. ve ark. (2011): Atherosclerosis in ancient Egyptian mummies; The Horus Study, J Am Coll Cardiol Cardiovasc Imaging, 4:315-327.
  • 3. ASL CAGLIARI, Asl Cagliari - thalassemia, URL http:// www.aslcagliari. it/index. php?xsl=7&s=566&v=2&c =441, 2017.
  • 4. ASL OLBIA, Asl Olbia, (2016): URL http://www. aslolbia.it/index. php?xsl= 7&s=3682&v=2&c=71, 2016.
  • 5. Berens A.J., Cooper T.L., Lachance J. (2016): The genomic health of ancient hominins, Human Biology Open Access, Pre-Prints, 115.
  • 6. Bouwmann A., Rühli F. (2016): Archaeogenetics in evolutionary medicine, J Mol Med, 94:971-977.
  • 7. Cao A., Gossens M., Pirastu M. (2008): β Thalassaemia mutations in Mediterranean population, British Journal of Haematology, 71:309-312.
  • 8. Cao A., Rosatelli C., Pirastu M., Galanello R. (1991): Thalassemias in Sardinia: molecular pathology, phenotype-genotype correlation and prevention, The American Journal of Pediatric Haematology/Oncology, 13:179-188.
  • 9. Cooper A. (1994): Ancient DNA sequences reveal unsuspected phylogenetic relationships within New Zealand wrens (Acanthisittidae), Birkhfiuser Verlag Basel.
  • 10. Dannemann M., Andres A.M., Kelso J. (2016): Introgression of Neanderthal- and Denisovan- like haplotypes contributes to adaptive variation in human toll-like receptors, Am J Hum Genet, 98:399-399.
  • 11. Deschamps M., Laval G., Fagny M. ve ark. (2016): Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes, Am J Hum Genet, 98:5-21.
  • 12. Flint J., Harding R.M., Boyce A.J., Clegg J.B. (1998): The population genetics of the haemoglobinopathies, Baillieres Clinical Haemotology, 11:1-51.
  • 13. Fornaciari G. (1999): Renaissance mummies in Italy, MedSecoli, 11:85-105.
  • 14. Gluckman P., Beedle A., Hanson M. (2012): Evrimsel Tıbbın İlkeleri, Birinci Baskıdan Çeviri, Çeviren: B. Çıplak, O.K. Başkurt, H. Uysal, Palme Yayıncılık, Ankara.
  • 15. Gollenberg E.M. (1994): Ancient DNA, SpringerVerlag New York Inc, 237-256.
  • 16. Green R.E. ve ark. (2010): A draft sequence of the Neandertal genome, Science, 328(5979):710-722.
  • 17. Gugerli F., Parducci L., Petit R.J. (2005): Ancient plant DNA: review and prospects, New Phytologist, 166(2):409-418.
  • 18. Haak W., Gruber P., Rühli F.J., Böni T. ve ark. (2005): Molecular evidence of HLA-B27 in a historical case of ankylosing spondylitis, Arthritis Rheum, 52:3318-9.
  • 19. Habicht M.E. ve ark. (2016): QueenNefertari, The Royal Spouse of Pharaoh Ramses II: A Multidisciplinary Investigation of the Mummified RemainsFound in Her Tomb (QV66), PLoS ONE 11:e0166571.
  • 20. Keller A. ve ark. (2012): New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing, NatCommun, 3:698.
  • 21. Leden I., Götherström A., Drenzel L., Svensson B. (2009): HLA-B27 sequences identified in a medieval skeleton with ankylosing spondylitis, Ann Rheum Dis, 68:757-8.
  • 22. Özbudun S., Uysal G. (2015):50 Soruda Antropoloji, Bilim ve Gelecek Kitaplığı, 3. Baskı.
  • 23. Paabö S. (1989): Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification, PNAS, 86(6):1939-43.
  • 24. Packard R.M. (2007): The making of tropical disease: A short history of malaria, The Johns Hopkins University Press, Baltimore.
  • 25. Poinar H.N. ve ark. (1998): Molecular Coproscopy: Dung and Diet of the Extinct Ground Sloth Nothrotheriopsshastensis, Science, 281:402-6.
  • 26. Rasmussen M. ve ark. (2010): Ancient human genome sequence of an extinct Palaeo-Eskimo, Nature, 463:757-762.
  • 27. Reich D. ve ark. (2010): Genetic history of an archaic hominin group from Denisova Cave in Siberia, Nature, 468:1053-1060.
  • 28. Renfrew C., Bahn P. (2015): Arkeoloji Anahtar Kavramlar, İletişim Yayınları, 2. Baskı.
  • 29. Rollo F., Venanzi F.M., Amici A. (1994): DNA and RNA from Ancient PlantSeeds, In: Ancient DNA, Springer-Verlag New York Inc, 218-236.
  • 30. Rosatelli M.C. ve ark. (1992): Molecular characterization of beta-thalassemia in Sardinian population, American Journal of Human Genetics, 50:422-426.
  • 31. Sallares R., Bouwman A., Anderung C. (2004): The spread of malaria to Southern Europe in antiquity: new approaches to old problems, Medical History, 48:311-32.
  • 32. Setzer T.J. (2010): Malaria in prehistoric Sardinia (Italy): An examination of skeletal remains from the Middle Bronze Age, Pro Ques tDiss. Theses, 338.
  • 33. Shin D.H. ve ark. (2017): Paleogenetic study on the 17th century Korean mummy with atherosclerotic cardovascular disease, PLoS ONE, 12(8):e0183098.
  • 34. Simonti C.N. ve ark. (2016): The phenotypic legacy of admixture between modern humans and Neanderthals, Science, 351:737-741.
  • 35. Stuart B.L., Dugan K.A., Allard M.W., Kearney M. (2006): Extraction of nuclear DNA from bone of skeletonized and fluid‐preserved museum specimens, Systematics and Biodiversity, 4:2, 133-136.
  • 36. Tognotti E. (2009): Program to eradicate malaria in Sardinia 1946-1950, Emerging Infectious Diseases.
  • 37. Vigano C., Haas C., Rühli F.J., Bouwman A. (2017): 2000 year old β-thalassemia case in Sardinia suggests malaria was endemic by the Roman period, Am J Phys Anthropol, 164:362-370.
  • 38. Weyrich L.S. ve ark. (2017): Neanderthal behaviour, diet and disease inferred from ancient DNA in dental calculus, Nature, 544:357-361.
  • 39. Wisely S.M., Maldonado J.E., Fleischer R.C. (2004): A technique for sampling ancient DNA that minimizes damage to museum specimens, Conservation Genetics, 5: 105–107.
  • 40. Zimmerman M.R. ve ark. (1981): The paleopathology of an Aleutian mummy, Arch Pathol Lab Med, 105:638-614.
  • 41. Zink A. ve ark. (2014): Genomic correlates of atherosclerosis in ancient humans, Glob Heart, 9:203- 209.