Nörodejeneratif Hastalıklarda Umut Verici Bir Terapötik Hedef: Sestrin-2

Alzheimer, Parkinson, Huntington ve amyotrofik lateral skleroz dâhil olmak üzere nörodejeneratif hastalıklar günümüz dünyasında giderek daha yaygın hale gelen, multifaktöriyel ve ilerleyici tipte hastalıklardır. Nörodejeneratif bozuklukların yaygın etiyolojilerinin başında yaşlanma, oksidatif stres ve mitokondriyal disfonksiyon gelmektedir. Nörodejeneratif hastalıkların tedavisinde kullanılan güncel ilaçlar hastanın yaşam kalitesini iyileştirse de hastalığın gelişimini ve ilerlemesini yavaşlatan veya önleyen bir tedavi henüz mevcut değildir. Bu ilaçların en büyük dezavantajı ise kronik kullanımlarında ciddi yan etkilerle karşılaşılmasıdır. Bu kapsamda yeni terapötik hedeflere yönelik uzun vadede yan etki profili düşük yeni ajanlara ihtiyaç duyulmaktadır. Son zamanlarda gerçekleştirilen çalışmalarda, stresle indüklenebilir bir metabolik protein olan Sestrin-2’nin reaktif oksijen türlerini baskıladığı, metabolizma ve inflamasyonu düzenlediği ve genotoksisite ve oksidatif stres, mitokondriyal disfonksiyon, endoplazmik retikulum stresi ve hipoksi dâhil olmak üzere çeşitli zararlı uyaranlara karşı hücresel koruma sağladığı gösterilmiştir. Sestrin-2’nin düzenlenmesi ve sinyal mekanizmalarına ilişkin çığır açan araştırmalarla, potansiyel rolü ve konak yanıtındaki önemi konusundaki bilgilerimiz önemli derecede artmış olsa da Sestrin-2’nin nörodejeneratif hastalıklarda işlevleri için daha fazla çalışmaya ihtiyaç duyulmaktadır. Bu çalışmada, nörodejeneratif hastalıklarda önemli bir terapötik hedef olma potansiyeline sahip Sestrin-2’ye dikkat çekmek amacıyla literatürdeki bilgiler detaylı bir şekilde derlenmiştir.

A Promising Therapeutic Target in Neurodegenerative Diseases: Sestrin-2

Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis are the more common, multi-factorial, and progressive diseases in today’s world. The most common etiology of neurodegenerative disorders is aging, oxidative stress, and mitochondrial dysfunction. Modern medicines for the treatment of neurodegenerative diseases improve the patient’s quality of life, but no treatment slows down or prevents the development and progression of the disease. The greatest disadvantage of these drugs is that they cause serious side effects in their chronic use. New agents with low side effect profiles in the long term are needed for new therapeutic targets. Recent studies have shown that Sestrin-2, a stress-inducible metabolic protein, suppresses reactive oxygen species, regulates metabolism and inflammation, and provides cellular protection against various harmful stimuli including genotoxicity and oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and hypoxia. With groundbreaking research into the regulation and signaling mechanisms of sestrin-2, although our knowledge of its potential role and its importance to host response has increased considerably, its function in neurodegenerative diseases remains unclear. The present study compiled in detail the information in the literature to draw attention to sestrin-2, which has the potential to be a major therapeutic target in neurodegenerative diseases.

___

  • Adam, O. R., & Jankovic, J. (2008). Symptomatic treatment of Huntington disease. Neurotherapeutics, 5(2), 181-197. doi:10.1016/j.nurt.2008.01.008
  • Bae, Soo H., Sung, Su H., Oh, Sue Y., Lim, Jung M., Lee, Se K., Park, Young N., . . . Rhee, Sue G. (2013). Sestrins Activate Nrf2 by Promoting p62-Dependent Autophagic Degradation of Keap1 and Prevent Oxidative Liver Damage. Cell Metabolism, 17(1), 73-84. doi:https://doi.org/10.1016/j.cmet.2012.12.002
  • Bar-Peled, L., & Sabatini, D. M. (2014). Regulation of mTORC1 by amino acids. Trends Cell Biol, 24(7), 400-406. doi:10.1016/j.tcb.2014.03.003
  • Bhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother, 74, 101-110. doi:10.1016/j.biopha.2015.07.025
  • Buckbinder, L., Talbott, R., Seizinger, B. R., & Kley, N. (1994). Gene regulation by temperature-sensitive p53 mutants: identification of p53 response genes. Proc Natl Acad Sci U S A, 91(22), 10640-10644. doi:10.1073/pnas.91.22.10640
  • Budanov, A. V. (2011). Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal, 15(6), 1679-1690. doi:10.1089/ars.2010.3530 Budanov, A. V., Lee, J. H., & Karin, M. (2010). Stressin' Sestrins take an aging fight. EMBO Mol Med, 2(10), 388-400. doi:10.1002/emmm.201000097
  • Budanov, A. V., Sablina, A. A., Feinstein, E., Koonin, E. V., & Chumakov, P. M. (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science, 304(5670), 596-600. doi:10.1126/science.1095569
  • Budanov, A. V., Shoshani, T., Faerman, A., Zelin, E., Kamer, I., Kalinski, H., . . . Feinstein, E. (2002). Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene, 21(39), 6017-6031. doi:10.1038/sj.onc.1205877
  • Castellani, R. J., Rolston, R. K., & Smith, M. A. (2010). Alzheimer disease. Dis Mon, 56(9), 484-546. doi:10.1016/j.disamonth.2010.06.001
  • Chen, C. C., Jeon, S. M., Bhaskar, P. T., Nogueira, V., Sundararajan, D., Tonic, I., . . . Hay, N. (2010). FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell, 18(4), 592-604. doi:10.1016/j.devcel.2010.03.008
  • Chen, W. W., Zhang, X., & Huang, W. J. (2016). Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep, 13(4), 3391-3396. doi:10.3892/mmr.2016.4948
  • Chen, X., Guo, C., & Kong, J. (2012). Oxidative stress in neurodegenerative diseases. Neural regeneration research, 7(5), 376-385. doi:10.3969/j.issn.1673-5374.2012.05.009
  • Ciechanover, A., & Kwon, Y. T. (2015). Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med, 47(3), e147. doi:10.1038/emm.2014.117
  • Cummings, J. L., & Cole, G. (2002). Alzheimer disease. Jama, 287(18), 2335-2338. doi:10.1001/jama.287.18.2335 Das, G., Shravage, B. V., & Baehrecke, E. H. (2012). Regulation and function of autophagy during cell survival and cell death. Cold Spring Harbor perspectives in biology, 4(6), a008813. doi:10.1101/cshperspect.a008813
  • Dickey, A. S., & La Spada, A. R. (2018). Therapy development in Huntington disease: From current strategies to emerging opportunities. Am J Med Genet A, 176(4), 842-861. doi:10.1002/ajmg.a.38494
  • Durães, F., Pinto, M., & Sousa, E. (2018). Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals (Basel), 11(2). doi:10.3390/ph11020044
  • Frankola, K. A., Greig, N. H., Luo, W., & Tweedie, D. (2011). Targeting TNF-α to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord Drug Targets, 10(3), 391-403. doi:10.2174/187152711794653751
  • Hay, N. (2008). p53 Strikes mTORC1 by Employing Sestrins. Cell Metabolism, 8(3), 184-185. doi:https://doi.org/10.1016/j.cmet.2008.08.010
  • Hong, H., Kim, B. S., & Im, H. I. (2016). Pathophysiological Role of Neuroinflammation in Neurodegenerative Diseases and Psychiatric Disorders. Int Neurourol J, 20(Suppl 1), S2-7. doi:10.5213/inj.1632604.302 Huang, L. K., Chao, S. P., & Hu, C. J. (2020). Clinical trials of new drugs for Alzheimer disease. J Biomed Sci, 27(1), 18. doi:10.1186/s12929-019-0609-7
  • Islam, M. T. (2017). Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res, 39(1), 73-82. doi:10.1080/01616412.2016.1251711
  • Jaiswal, M. K. (2019). Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Med Res Rev, 39(2), 733-748. doi:10.1002/med.21528
  • Jankovic, J., & Tan, E. K. (2020). Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry, 91(8), 795-808. doi:10.1136/jnnp-2019-322338
  • Jellinger, K. A., & Bancher, C. (1998). Neuropathology of Alzheimer's disease: a critical update. J Neural Transm Suppl, 54, 77-95. doi:10.1007/978-3-7091-7508-8_8
  • Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther, 342(3), 619-630. doi:10.1124/jpet.112.192138
  • Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., . . . Zoing, M. C. (2011). Amyotrophic lateral sclerosis. Lancet, 377(9769), 942-955. doi:10.1016/s0140-6736(10)61156-7
  • Kim, G. T., Lee, S. H., Kim, J. I., & Kim, Y. M. (2014). Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int J Mol Med, 33(4), 863-869. doi:10.3892/ijmm.2014.1658
  • Kovaleva, I. E., Tokarchuk, A. V., Zheltukhin, A. O., Dalina, A. A., Safronov, G. G., Evstafieva, A. G., . . . Budanov, A. V. (2020). Mitochondrial localization of SESN2. PLoS One, 15(4), e0226862. doi:10.1371/journal.pone.0226862
  • Lee, J. H., Budanov, A. V., Park, E. J., Birse, R., Kim, T. E., Perkins, G. A., . . . Karin, M. (2010). Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science, 327(5970), 1223-1228. doi:10.1126/science.1182228
  • Lee, J. H., Cho, U. S., & Karin, M. (2016). Sestrin regulation of TORC1: Is Sestrin a leucine sensor? Sci Signal, 9(431), re5. doi:10.1126/scisignal.aaf2885
  • Lee, S., Shin, J., Hong, Y., Shin, S. M., Shin, H. W., Shin, J., . . . Park, H. W. (2020). Sestrin2 alleviates palmitate-induced endoplasmic reticulum stress, apoptosis, and defective invasion of human trophoblast cells. Am J Reprod Immunol, 83(4), e13222. doi:10.1111/aji.13222
  • Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787-795. doi:10.1038/nature05292
  • Lin, Q., Ma, Y., Chen, Z., Hu, J., Chen, C., Fan, Y., . . . Ding, G. (2020). Sestrin‑2 regulates podocyte mitochondrial dysfunction and apoptosis under high‑glucose conditions via AMPK. Int J Mol Med, 45(5), 1361-1372. doi:10.3892/ijmm.2020.4508
  • Liu, S. Y., Lee, Y. J., & Lee, T. C. (2011). Association of platelet-derived growth factor receptor β accumulation with increased oxidative stress and cellular injury in sestrin 2 silenced human glioblastoma cells. FEBS Lett, 585(12), 1853-1858. doi:10.1016/j.febslet.2011.04.041
  • Maiuri, M. C., Malik, S. A., Morselli, E., Kepp, O., Criollo, A., Mouchel, P. L., . . . Kroemer, G. (2009). Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle, 8(10), 1571-1576. doi:10.4161/cc.8.10.8498 McDermott, C. J. (2019). Clinical trials in amyotrophic lateral sclerosis. Curr Opin Neurol, 32(5), 758-763. doi:10.1097/wco.0000000000000731
  • Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728-741. doi:10.1016/j.cell.2011.10.026
  • Nagahara, A. H., Merrill, D. A., Coppola, G., Tsukada, S., Schroeder, B. E., Shaked, G. M., . . . Tuszynski, M. H. (2009). Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat Med, 15(3), 331-337. doi:10.1038/nm.1912
  • Paganoni, S., Macklin, E. A., Hendrix, S., Berry, J. D., Elliott, M. A., Maiser, S., . . . Cudkowicz, M. E. (2020). Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic Lateral Sclerosis. N Engl J Med, 383(10), 919-930. doi:10.1056/NEJMoa1916945
  • Pasha, M., Eid, A. H., Eid, A. A., Gorin, Y., & Munusamy, S. (2017). Sestrin2 as a Novel Biomarker and Therapeutic Target for Various Diseases. Oxid Med Cell Longev, 2017, 3296294. doi:10.1155/2017/3296294
  • Peeters, H., Debeer, P., Bairoch, A., Wilquet, V., Huysmans, C., Parthoens, E., . . . Devriendt, K. (2003). PA26 is a candidate gene for heterotaxia in humans: identification of a novel PA26-related gene family in human and mouse. Hum Genet, 112(5-6), 573-580. doi:10.1007/s00439-003-0917-5
  • Plácido, E., de Paula Nascimento-Castro, C., Welter, P. G., Gil-Mohapel, J., & Brocardo, P. S. (2021). Linking Huntington disease, brain-derived neurotrophic factor, and depressive-like behaviors. In The Neuroscience of Depression (pp. 161-177): Elsevier.
  • Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., . . . Lang, A. E. (2017). Parkinson disease. Nat Rev Dis Primers, 3, 17013. doi:10.1038/nrdp.2017.13
  • Reed, J. C. (2000). Mechanisms of Apoptosis. The American Journal of Pathology, 157(5), 1415-1430. doi:https://doi.org/10.1016/S0002-9440(10)64779-7
  • Rhee, S. G., & Bae, S. H. (2015). The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic Biol Med, 88(Pt B), 205-211. doi:10.1016/j.freeradbiomed.2015.06.007
  • Ross, C. A., & Poirier, M. A. (2004). Protein aggregation and neurodegenerative disease. Nat Med, 10 Suppl, S10-17. doi:10.1038/nm1066
  • Seo, K., Seo, S., Han, J. Y., Ki, S. H., & Shin, S. M. (2014). Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction. Toxicology and Applied Pharmacology, 280(2), 314-322. doi:https://doi.org/10.1016/j.taap.2014.08.011
  • Steinberg, G. R., & Kemp, B. E. (2009). AMPK in Health and Disease. Physiol Rev, 89(3), 1025-1078. doi:10.1152/physrev.00011.2008
  • Sun, A. Y., & Chen, Y. M. (1998). Oxidative stress and neurodegenerative disorders. J Biomed Sci, 5(6), 401-414. doi:10.1007/bf02255928
  • Taylor, J. P., Hardy, J., & Fischbeck, K. H. (2002). Toxic proteins in neurodegenerative disease. Science, 296(5575), 1991-1995. doi:10.1126/science.1067122
  • Waldmeier, P. C., & Tatton, W. G. (2004). Interrupting apoptosis in neurodegenerative disease: potential for effective therapy? Drug Discov Today, 9(5), 210-218. doi:10.1016/s1359-6446(03)03000-9
  • Walker, F. O. (2007). Huntington's disease. Lancet, 369(9557), 218-228. doi:10.1016/s0140-6736(07)60111-1 Weissmiller, A. M., & Wu, C. (2012). Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener, 1(1), 14. doi:10.1186/2047-9158-1-14
  • Zesiewicz, T. A. (2019). Parkinson Disease. Continuum (Minneap Minn), 25(4), 896-918. doi:10.1212/con.0000000000000764
  • Zhang, X. Y., Wu, X. Q., Deng, R., Sun, T., Feng, G. K., & Zhu, X. F. (2013). Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal, 25(1), 150-158. doi:10.1016/j.cellsig.2012.09.004
  • Zhou, D., Zhan, C., Zhong, Q., & Li, S. (2013). Upregulation of sestrin-2 expression via P53 protects against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity. J Mol Neurosci, 51(3), 967-975. doi:10.1007/s12031-013-0081-x
  • Zoladz, J. A., Majerczak, J., Zeligowska, E., Mencel, J., Jaskolski, A., Jaskolska, A., & Marusiak, J. (2014). Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson's disease patients. J Physiol Pharmacol, 65(3), 441-448.