İNSANSIZ HAVA ARAÇLARI VE VERİMLİLİK İLİŞKİSİ ÜZERİNE BİR BİBLİYOMETRİK ANALİZ

Bu çalışmada, havacılık sektöründe köklü bir inovasyon olarak ortaya çıkan insansız hava araçları ve verimlilik ilişkisi üzerine yapılan akademik çalışmaların sistematik bir analizinin yapılması amaçlanmaktadır. Böylelikle insasız hava araçlarının verimlilik açısından değerlendirilebilmesininin sağlanması hedeflenmektedir. İnsansız hava araçlarının teknik, operasyonel, örgütsel vb. birçok verimlilik etkisi bulunması sebebi ile çalışma alanının geniş olması verimlilik hakkında genel çıkarım yapmayı zorlaştırmaktadır. Bu sebeple insansız hava araçları ve verimlilik üzerine yapılan akademik çalışmalardan tüm alanları kapsayacak bir analiz yapılacaktır. Scopus veri tabanında “İnsansız Hava Araçları”, “Drone” ve “Verimlilik” kelimeleri ile arama yapılarak, sonuçlar içerisinde anahtar kelimelerin eş-birlikteliğine dayalı eşleşmeler görselleştirilerek, yorumlanmıştır. Analiz için VOSViewer yazılımından yararlanılmıştır. Araştırma, İHA ve verimlilik üzerine çalışmaların tarım alanında yoğunlaştığını, bilişim sektöründe de çalışmaların olduğu sonucunu ortaya çıkarmıştır. Ancak birçok sektörde İHA kullanıldığı halde, verimliliği üzerine bilimsel çalışmaların olmadığı dikkat çekmiştir. Ayrıca bu alanda en çok yayın yapan ülkelerin Hindistan ve A.B.D. olduğu belirlenmiştir. Çalışma, insansız hava araçlarının verimliliği ile ilgili genel bir bakış açısı sağlayacak ilk çalışma olma özelliği ile özgünlük yaratmaktadır. Özellikle verimlilik çalışmalarının takibi için yol gösterici olacağına inanılmaktadır.

A Bibliometric Analysis on the Relationship Between Unmanned Aerial Vehicles and Productivity

In this study, it is aimed to make a systematic analysis of academic studies on the relationship between unmanned aerial vehicles and productivity, which has emerged as a radical innovation in the aviation industry. Thus, it is aimed to ensure that unmanned aerial vehicles can be evaluated in terms of productivity. Technical, operational, organizational, etc. of unmanned aerial vehicles. Since there are many productivity effects, the wide working area makes it difficult to make general inferences about productivity. For this reason, an analysis will be made to cover all areas from academic studies on unmanned aerial vehicles and productivity. By searching Scopus databases with the words "Unmanned Aerial Vehicles", "Drone" and "Productivity", the matches based on the co-collaboration of the keywords in the results were visualized and interpreted. VOSViewer software was used for analysis. The research has revealed that the studies on UAV and productivity are concentrated in the field of agriculture, and there are also studies in the IT sector. However, it has been noted that although UAVs are used in many sectors, there are no scientific studies on its efficiency. In addition, India and the USA are the countries that publish the most in this field. The study creates originality as it is the first study to provide a general perspective on the productivity of unmanned aerial vehicles. It is believed that it will be a guide especially for the follow-up of productivity studies.

___

  • Arruda, H., Silva, E. R., Lessa, M., Proença Jr, D., & Bartholo, R. (2022). VOSviewer and bibliometrix. Journal of the Medical Library Association: JMLA, 110(3), 392.
  • Coccia, M. (2018). A theory of the general causes of long waves: War, general purpose technologies, and economic change. Technological Forecasting and Social Change, 128, 287-295.
  • Çömert, R., Avdan, U., & Şenkal, E. İnsansız Hava Araçlarının Kullanım Alanları ve Gelecekteki Beklentiler. Iv. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2012), 16-19 Ekim 2012, Zonguldak
  • Das, S., Chapman, S., Christopher, J., Choudhury, M. R., Menzies, N. W., Apan, A., & Dang, Y. P. (2021). UAV-thermal imaging: A technological breakthrough for monitoring and quantifying crop abiotic stress to help sustain productivity on sodic soils–A case review on wheat. Remote Sensing Applications: Society and Environment, 23, 100583.
  • Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204.
  • Dupont, Q. F., Chua, D. K., Tashrif, A., & Abbott, E. L. (2017). Potential applications of UAV along the construction's value chain. Procedia Engineering, 182, 165-173.
  • Hossain, M. A., & Nadeem, A. (2019, May). Towards digitizing the construction industry: State of the art of construction 4.0. In Proceedings of the ISEC (Vol. 10, pp. 1-6).
  • Irizarry, J., Gheisari, M., Williams, G., & Roper, K. (2014). Ambient intelligence environments for accessing building information: A healthcare facility management scenario. Facilities, 32(3/4), 120-138.
  • Mogili, U. R., & Deepak, B. B. V. L. (2018). Review on application of drone systems in precision agriculture. Procedia computer science, 133, 502-509.
  • Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., & Mohammed, F. (2020). Unmanned aerial vehicles applications in future smart cities. Technological forecasting and social change, 153, 119293.
  • Nhamo, L., Mabhaudhi, T., & Modi, A. T. (2019). Preparedness or repeated short-term relief aid? Building drought resilience through early warning in southern Africa. Water Sa, 45(1), 75-85.
  • Nhamo, L., Magidi, J., Nyamugama, A., Clulow, A. D., Sibanda, M., Chimonyo, V. G., & Mabhaudhi, T. (2020). Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture, 10(7), 256.
  • Ramadan, Z. B., Farah, M. F., & Mrad, M. (2017). An adapted TPB approach to consumers’ acceptance of service-delivery drones. Technology Analysis & Strategic Management, 29(7), 817-828.
  • Riyanto, F., Setyandito, O., & Pramudya, A. (2021, April). Realtime monitoring study for highway construction using Unmanned Aerial Vehicle (UAV) technology. In IOP Conference Series: Earth and Environmental Science (Vol. 729, No. 1, p. 012040). IOP Publishing.
  • Sacramento, D., Pisinger, D., & Ropke, S. (2019). An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. Transportation Research Part C: Emerging Technologies, 102, 289-315.
  • Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73.
  • Tian, M. W., Wang, L., Yan, S. R., Tian, X. X., Liu, Z. Q., & Rodrigues, J. J. P. (2019). Research on financial technology innovation and application based on 5G network. IEEE Access, 7, 138614-138623.
  • Van Eck, N. J., & Waltman, L. (2011). VOSviewer manual. Manual for VOSviewer version, 1(0).
  • Vasisht, D., Kapetanovic, Z., Won, J., Jin, X., Chandra, R., Sinha, S., ... & Stratman, S. (2017). {FarmBeats}: an {IoT} platform for {Data-Driven} agriculture. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17) (pp. 515-529).
  • Villi, O., & Yakar, M. (2022). İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri. Türkiye İnsansız Hava Araçları Dergisi, 4(2), 73-100.
  • Yavaş, V. (2022). Havacılıkta Dijitalleşme ve Verimlilik İlişkisi Üzerine Bir İçerik Analizi. Verimlilik Dergisi, 225-237.