KKM implies the Brouwer fixed point theorem: Another proof
KKM implies the Brouwer fixed point theorem: Another proof
It is well-known that the Brouwer fixed point theorem (BFPT), the weak Sperner combinatorial lemma, and the
Knaster-Kuratowski-Mazurkiewicz (KKM) theorem are mutually equivalent and have scores of equivalent formulations and several thousand applications. It is well-known that KKM deduced the BFPT from Sperner Lemma. In this article, we recall some KKM theoretic results implying the BFPT.
___
- [1] L.E.J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71 (1912) 97–115.
- [2] C.-M. Chen and T.-H. Chang, Some results for the family 2– g KKM(X,Y ) and the ?-mapping in hyperconvex metric
spaces, Nonlinear Anal. 69 (2008) 2533–2540.
- [3] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Annalen 142 (1961) 305–310.
- [4] B. Halpern, Fixed-point theorems for outward maps, Doctoral Thesis, U.C.L.A. 1965.
- [5] M.A. Khamsi, KKM and Ky Fan theorems in hyperconvex metric spaces, J. Math. Anal. Appl. 204 (1996) 298–306.
- [6] M.A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010) 3123–3129.
doi:10.1016/j.na.2010.06.084.
- [7] B. Knaster, K. Kuratowski und S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-Dimensionale Simplexe, Fund.
Math. 14 (1929) 132–137.
- [8] R.D. Mauldin, The Scottish Book: Mathematics from the Scottish Café, Birkhäuser, Boston-Basel-Stuttgart, 1981.
- [9] S. Park, A generalization of the Brouwer fixed point theorem, Bull. Korean Math. Soc. 28 (1991) 33–37.
- [10] S. Park, Elements of the KKM theory on abstract convex spaces, J. Korean Math. Soc. 45(1) (2008) 1–27.
- [11] S. Park, New foundations of the KKM theory, J. Nonlinear Convex. Anal. 9(3) (2008) 331–350.
- [12] S. Park, The KKM principle in abstract convex spaces — Equivalent formulations and applications, Nonlinear Analysis
73 (2010) 1028–1042.
- [13] S. Park, Fixed point theorems in the new era of the KKM theory, Fixed Point Theory and Its Applications (Proc.
ICFPTA-2009), 145–159, Yokohama Publ., 2010.
- [14] S. Park, Comments on the KKM theory of metric type spaces, Linear and Nonlinear Anal. 2(1) (2016) 39–45.
- [15] S. Park, A history of the KKM Theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 56(2) (2017) 1–51.
- [16] S. Park, On further examples of partial KKM spaces, J. Fixed Point Theory 2019:10 (18 June, 2019), 1–18.
- [17] S. Park, Extending the realm of Horvath spaces, J. Nonlinear Convex Anal. 20(8) (2019) 1609–1621.
- [18] S. Park, KKM implies the Brouwer fixed point theorem: Revisited, to appear.
- [19] S. Park and K.S. Jeong, A proof of the Sperner lemma from the Brouwer fixed point theorem, Nonlinear Anal. Forum 8
(2003), 65–67.
- [20] E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Seminar Univ. Hamburg
6 (1928) 265–272.