Soğuk Atmosferik Plazma ve Kanser

Plazma doğal bir gaza enerji eklenerek iyonize hale getirilmesiyle oluşmaktadır. Tedavi edilecek doku ve amaca göre sıcak plazma veya soğuk plazma uygulanmaktadır. Soğuk plazma uygulandığı doku ve çevresinde hasara neden olmaması nedeniyle klinik uygulamalarda daha çok tercih edilmektedir. Soğuk atmosferik plazma, plazmanın bir çeşidi olup ısıl etki olmaksızın dermotoloji alanında yara, kaşıntı, ağrı, yara izi, aktinik keratoz, diyabetik ayak ve egzama tedavisinde kullanılmasının yanı sıra son yıllarda dişçilikte beyazlatma, implant yüzeylerinin modifikasyonu, yüzey kaplama gibi uygulamalarda da sık sık kullanılmaya başlamıştır. Bu derleme yazısında öncelikle plazma hakkında genel bilgiler verilecek ardından soğuk atmosferik plazmanın kanser tedavisinde kullanımı incelenecektir.

Cold Atmospheric Plasma and Cancer

Plasma is formed by adding energy to a natural gas and ionizing it. Depending on the tissue to be treated and the purpose, hot plasma or cold plasma have been applied. Cold plasma is more preferred in clinical applications because it does not cause damage to the tissue and its surroundings. Cold atmospheric plasma is a type of plasma and it has been used in dermatology in the treatment of wounds, itching, pain, scarring, actinic keratosis, diabetic foot and eczema without thermal effect, as well as in applications such as bleaching, modification of implant surfaces, surface coating in dentistry in recent years. In this review article, firstly, general information about plasma will be given and then the use of cold atmospheric plasma in cancer treatment will be discussed.

___

  • [1] M. Ansari, M. Sharifian, M. H. Ehrampoush, A. H. Mahvi, M. H. Salmani, and H. Fallahzadeh, "Dielectric barrier discharge plasma with photocatalysts as a hybrid emerging technology for degradation of synthetic organic compounds in aqueous environments: A critical review," Chemosphere, vol. 263, Jan 2021, Art no. 128065, doi: 10.1016/j.chemosphere.2020.128065.
  • [2] A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, "Gas discharge plasmas and their applications," (in English), Spectrochimica Acta Part B-Atomic Spectroscopy, Review vol. 57, no. 4, pp. 609-658, Apr 2002, Art no. Pii s0584-8547(01)00406-2, doi: 10.1016/s0584-8547(01)00406-2.
  • [3] E. Feizollahi, N. N. Misra, and M. S. Roopesh, "Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications," Critical Reviews in Food Science and Nutrition, vol. 61, no. 4, pp. 666-689, Feb 21 2021, doi: 10.1080/10408398.2020.1743967.
  • [4] N. Xu, X. L. Cui, Z. Fang, Y. W. Shi, and R. Y. Zhou, "A Two-Mode Portable Atmospheric Pressure Air Plasma Jet Device for Biomedical Applications," (in English), Ieee Transactions on Plasma Science, Article vol. 46, no. 4, pp. 947-953, Apr 2018, doi: 10.1109/tps.2018.2810142.
  • [5] F. Rezaei, B. Shokri, and M. Sharifian, "Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties," Applied Surface Science, vol. 360, pp. 641-651, Jan 1 2016, doi: 10.1016/j.apsusc.2015.11.036.
  • [6] S. A. Mir, M. A. Shah, and M. M. Mir, "Understanding the Role of Plasma Technology in Food Industry," (in English), Food and Bioprocess Technology, Review vol. 9, no. 5, pp. 734-750, May 2016, doi: 10.1007/s11947-016-1699-9.
  • [7] S. Siadati, M. Pet'kova, A. J. Kenari, S. Kyzek, E. Galova, and A. Zahoranova, "Effect of a non-thermal atmospheric pressure plasma jet on four different yeasts," Journal of Physics D-Applied Physics, vol. 54, no. 2, Jan 14 2021, Art no. 025204, doi: 10.1088/1361-6463/abb624.
  • [8] H. W. Lee, S. H. Nam, A. A. H. Mohamed, G. C. Kim, and J. K. Lee, "Atmospheric Pressure Plasma Jet Composed of Three Electrodes: Application to Tooth Bleaching," (in English), Plasma Processes and Polymers, Article vol. 7, no. 3-4, pp. 274-280, Mar 2010, doi: 10.1002/ppap.200900083.
  • [9] Y. Wang, Z. Wang, H. Yang, and X. Zhu, "Gas phase surface discharge plasma model for yeast inactivation in water," Journal of Food Engineering, vol. 286, Dec 2020, Art no. 110117, doi: 10.1016/j.jfoodeng.2020.110117.
  • [10] N. Abramzon, J. C. Joaquin, J. Bray, and G. Brelles-Marino, "Biofilm destruction by RF high-pressure cold plasma jet," Ieee Transactions on Plasma Science, vol. 34, no. 4, pp. 1304-1309, Aug 2006, doi: 10.1109/tps.2006.877515.
  • [11] M. S. I. Khan, E.-J. Lee, and Y.-J. Kim, "A submerged dielectric barrier discharge plasma inactivation mechanism of biofilms produced by Escherichia coli O157: H7, Cronobacter sakazakii, and Staphylococcus aureus," Scientific Reports, vol. 6, Nov 15 2016, Art no. 37072, doi: 10.1038/srep37072.
  • [12] P. Guo et al., "A novel atmospheric-pressure air plasma jet for wound healing," (in English), International Wound Journal, Article; Early Access p. 15, Jul 2021, doi: 10.1111/iwj.13652.
  • [13] G. Fridman et al., "Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air," (in English), Plasma Chemistry and Plasma Processing, Article vol. 26, no. 4, pp. 425-442, Aug 2006, doi: 10.1007/s11090-006-9024-4.
  • [14] P. S. G. Subramanian, A. Jain, A. M. Shivapuji, N. R. Sundaresan, S. Dasappa, and L. H. Rao, "Plasma-activated water from a dielectric barrier discharge plasma source for the selective treatment of cancer cells," (in English), Plasma Processes and Polymers, Article vol. 17, no. 8, p. 13, Aug 2020, Art no. e1900260, doi: 10.1002/ppap.201900260.
  • [15] M. El Shaer, A. Zaki, A. M. Reda, M. Adel, M. Mobasher, and S. Ali, "Effect of Plasma Activated Mist on Breast Cancer Cells," (in English), Ieee Transactions on Radiation and Plasma Medical Sciences, Article vol. 2, no. 2, pp. 103-108, Mar 2018, doi: 10.1109/trpms.2017.2754580.
  • [16] D. H. Xu et al., "The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma," (in English), Biochemical and Biophysical Research Communications, Article vol. 473, no. 4, pp. 1125-1132, May 2016, doi: 10.1016/j.bbrc.2016.04.027.
  • [17] Y. Binenbaum et al., "Cold Atmospheric Plasma, Created at the Tip of an Elongated Flexible Capillary Using Low Electric Current, Can Slow the Progression of Melanoma," (in English), Plos One, Article vol. 12, no. 1, p. 15, Jan 2017, Art no. e0169457, doi: 10.1371/journal.pone.0169457.
  • [18] X. Tan, S. S. Zhao, Q. Lei, X. P. Lu, G. Y. He, and K. Ostrikov, "Single-Cell-Precision Microplasma-Induced Cancer Cell Apoptosis," (in English), Plos One, Article vol. 9, no. 6, p. 10, Jun 2014, Art no. e101299, doi: 10.1371/journal.pone.0101299.
  • [19] Kim et al., "Cancer Therapy: Single-Cell-Level Microplasma Cancer Therapy (Small 16/2011)," Small, vol. 7, no. 16, pp. 2290-2290, Aug. 2011 2011, doi: doi: 10.1002/smll.201190059.
  • [20] E. S. M. Mouele, O. O. Fatoba, O. Babajide, K. O. Badmus, and L. F. Petrik, "U Review of the methods for determination of reactive oxygen species and suggestion for their application in advanced oxidation induced by dielectric barrier discharges," (in English), Environmental Science and Pollution Research, Review vol. 25, no. 10, pp. 9265-9282, Apr 2018, doi: 10.1007/s11356-018-1392-9.
  • [21] A. Rahal et al., "Oxidative Stress, Prooxidants, and Antioxidants: The Interplay," (in English), Biomed Research International, Review vol. 2014, p. 19, 2014, Art no. 761264, doi: 10.1155/2014/761264.
  • [22] A. Tovmasyan et al., "A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics," (in English), Free Radical Biology and Medicine, Article vol. 86, pp. 308-321, Sep 2015, doi: 10.1016/j.freeradbiomed.2015.05.018.
  • [23] L. J. Su et al., "Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis," (in English), Oxidative Medicine and Cellular Longevity, Review vol. 2019, p. 13, Oct 2019, Art no. 5080843, doi: 10.1155/2019/5080843.
  • [24] B. T. Ashok, J. Ahmad, A. Qadri, and R. Ali, "Anti-ROS-DNA monoclonal antibody as molecular probe for oxidative DNA damage," (in English), Biochemistry and Molecular Biology International, Article vol. 43, no. 6, pp. 1219-1229, Dec 1997, doi:10.1080/15216549700205051..
  • [25] B. Aryal and V. A. Rao, "Specific protein carbonylation in human breast cancer tissue compared to adjacent healthy epithelial tissue," (in English), Plos One, Article vol. 13, no. 3, p. 14, Mar 2018, Art no. e0194164, doi: 10.1371/journal.pone.0194164.
  • [26] A. Privat-Maldonado et al., "ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy," (in English), Oxidative Medicine and Cellular Longevity, Review vol. 2019, p. 29, Oct 2019, Art no. 9062098, doi: 10.1155/2019/9062098.
  • [27] P. T. Schumacker, "Reactive oxygen species in cancer cells: Live by the sword, die by the sword," (in English), Cancer Cell, Editorial Material vol. 10, no. 3, pp. 175-176, Sep 2006, doi: 10.1016/j.ccr.2006.08.015.
  • [28] G. Sirokmany, A. Donko, and M. Geiszt, "Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models," (in English), Trends in Pharmacological Sciences, Review vol. 37, no. 4, pp. 318-327, Apr 2016, doi: 10.1016/j.tips.2016.01.006.
  • [29] K. A. Kang et al., "Non-thermal dielectric-barrier discharge plasma induces reactive oxygen species by epigenetically modifying the expression of NADPH oxidase family genes in keratinocytes," (in English), Redox Biology, Article vol. 37, p. 11, Oct 2020, Art no. 101698, doi: 10.1016/j.redox.2020.101698.
  • [30] Y. H. Ma et al., "Non-Thermal Atmospheric Pressure Plasma Preferentially Induces Apoptosis in p53-Mutated Cancer Cells by Activating ROS Stress-Response Pathways," (in English), Plos One, Article vol. 9, no. 4, p. 14, Apr 2014, Art no. e91947, doi: 10.1371/journal.pone.0091947.
  • [31] S. U. Kang et al., "Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species," (in English), Cell Death & Disease, Article vol. 5, p. 10, Feb 2014, Art no. e1056, doi: 10.1038/cddis.2014.33.
  • [32] M. Schuster et al., "Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer," (in English), Journal of Cranio-Maxillofacial Surgery, Article vol. 44, no. 9, pp. 1445-1452, Sep 2016, doi: 10.1016/j.jcms.2016.07.001.
  • [33] I. Yajima et al., "Non-equilibrium atmospheric pressure plasmas modulate cell cycle-related gene expressions in melanocytic tumors of RET-transgenic mice," (in English), Experimental Dermatology, Article vol. 23, no. 6, pp. 424-425, Jun 2014, doi: 10.1111/exd.12415.
  • [34] Z. B. Zhang et al., "Gasdermin E suppresses tumour growth by activating anti-tumour immunity," (in English), Nature, Article vol. 579, no. 7799, pp. 415-+, Mar 2020, doi: 10.1038/s41586-020-2071-9.
  • [35] X. R. Yang et al., "Cold atmospheric plasma induces GSDME-dependent pyroptotic signaling pathway via ROS generation in tumor cells," (in English), Cell Death & Disease, Article vol. 11, no. 4, p. 11, Apr 2020, doi: 10.1038/s41419-020-2459-3.
  • [36] L. V. Yuzefovych, S. P. LeDoux, G. L. Wilson, and L. I. Rachek, "Mitochondrial DNA Damage via Augmented Oxidative Stress Regulates Endoplasmic Reticulum Stress and Autophagy: Crosstalk, Links and Signaling," (in English), Plos One, Article vol. 8, no. 12, p. 5, Dec 2013, Art no. e83349, doi: 10.1371/journal.pone.0083349.
  • [37] T. J. Fan, L. H. Han, R. S. Cong, and J. Liang, "Caspase family proteases and apoptosis," (in English), Acta Biochimica Et Biophysica Sinica, Review vol. 37, no. 11, pp. 719-727, Nov 2005, doi: 10.1111/j.1745-7270.2005.00108.x.
  • [38] T. Adachi, H. Tanaka, S. Nonomura, H. Hara, S. Kondo, and M. Hod, "Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network," (in English), Free Radical Biology and Medicine, Article vol. 79, pp. 28-44, Feb 2015, doi: 10.1016/j.freeradbiomed.2014.11.014.
  • [39] A. Troyano, P. Sancho, C. Fernandez, E. de Blas, P. Bernardi, and P. Aller, "The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells," Cell Death and Differentiation, vol. 10, no. 8, pp. 889-898, Aug 2003, doi: 10.1038/sj.cdd.4401249.
  • [40] X. Q. Cheng et al., "Canady Helios Cold Plasma Induces Breast Cancer Cell Death by Oxidation of Histone mRNA," (in English), International Journal of Molecular Sciences, Article vol. 22, no. 17, p. 22, Sep 2021, Art no. 9578, doi: 10.3390/ijms22179578.
  • [41] S. Lee et al., "Cold atmospheric plasma restores tamoxifen sensitivity in resistant MCF-7 breast cancer cell," (in English), Free Radical Biology and Medicine, Article vol. 110, pp. 280-290, Sep 2017, doi: 10.1016/j.freeradbiomed.2017.06.017.
  • [42] A. Schmidt, S. Bekeschus, T. von Woedtke, and S. Hasse, "Cell migration and adhesion of a human melanoma cell line is decreased by cold plasma treatment," (in English), Clinical Plasma Medicine, Article vol. 3, no. 1, pp. 24-31, Jun 2015, doi: 10.1016/j.cpme.2015.05.003.
  • [43] M. Adhikari et al., "Cold Atmospheric Plasma as a Novel Therapeutic Tool for the Treatment of Brain Cancer," (in English), Current Pharmaceutical Design, Review vol. 26, no. 19, pp. 2195-2206, 2020, doi: 10.2174/1381612826666200302105715.
  • [44] X. Q. Cheng, J. Sherman, W. Murphy, E. Ratovitski, J. Canady, and M. Keidar, "The Effect of Tuning Cold Plasma Composition on Glioblastoma Cell Viability," (in English), Plos One, Article vol. 9, no. 5, p. 9, May 2014, Art no. e98652, doi: 10.1371/journal.pone.0098652.
  • [45] M. Akter, A. Jangra, S. A. Choi, E. H. Choi, and I. Han, "Non-Thermal Atmospheric Pressure Bio-Compatible Plasma Stimulates Apoptosis via p38/MAPK Mechanism in U87 Malignant Glioblastoma," Cancers, vol. 12, no. 1, Jan 2020, Art no. 245, doi: 10.3390/cancers12010245.
  • [46] G. E. Conway et al., "Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells," (in English), Scientific Reports, Article vol. 9, p. 12, Sep 2019, Art no. 12891, doi: 10.1038/s41598-019-49013-3.
  • [47] E. Tavares-da-Silva et al., "Cold Atmospheric Plasma, a Novel Approach against Bladder Cancer, with Higher Sensitivity for the High-Grade Cell Line," (in English), Biology-Basel, Article vol. 10, no. 1, p. 19, Jan 2021, Art no. 41, doi: 10.3390/biology10010041.
  • [48] H. Zhang et al., "Antitumor effects of hyperthermia with plasma-treated solutions on 3D bladder tumor spheroids," (in English), Plasma Processes and Polymers, Article vol. 18, no. 10, p. 8, Oct 2021, Art no. e2100070, doi: 10.1002/ppap.202100070.
  • [49] N. Kaushik, N. Kumar, C. H. Kim, N. K. Kaushik, and E. H. Choi, "Dielectric Barrier Discharge Plasma Efficiently Delivers an Apoptotic Response in Human Monocytic Lymphoma," (in English), Plasma Processes and Polymers, Article vol. 11, no. 12, pp. 1175-1187, Dec 2014, doi: 10.1002/ppap.201400102.
  • [50] K. Panngom, K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi, "Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma," (in English), Cell Death & Disease, Article vol. 4, p. 8, May 2013, Art no. e642, doi: 10.1038/cddis.2013.168.
  • [51] W. T. Li et al., "Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy," (in English), Free Radical Biology and Medicine, Article vol. 130, pp. 71-81, Jan 2019, doi: 10.1016/j.freeradbiomed.2018.10.429.
  • [52] R. M. Walk et al., "Cold atmospheric plasma for the ablative treatment of neuroblastoma," Journal of Pediatric Surgery, vol. 48, no. 1, pp. 67-73, Jan 2013, doi: 10.1016/j.jpedsurg.2012.10.020.
  • [53] F. Saadati, H. Mahdikia, H. A. Abbaszadeh, M. A. Abdollahifar, M. S. Khoramgah, and B. Shokri, "Comparison of Direct and Indirect cold atmospheric-pressure plasma methods in the B16F10 melanoma cancer cells treatment," (in English), Scientific Reports, Article vol. 8, p. 15, May 2018, Art no. 7689, doi: 10.1038/s41598-018-25990-9.
  • [54] N. K. Kaushik, Y. H. Kim, Y. G. Han, and E. H. Choi, "Effect of jet plasma on T98G human brain cancer cells," (in English), Current Applied Physics, Article vol. 13, no. 1, pp. 176-180, Jan 2013, doi: 10.1016/j.cap.2012.07.002.
  • [55] M. Wang, B. Holmes, X. Q. Cheng, W. Zhu, M. Keidar, and L. G. Zhang, "Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells," (in English), Plos One, Article vol. 8, no. 9, p. 11, Sep 2013, Art no. e73741, doi: 10.1371/journal.pone.0073741.
  • [56] Z. T. Chen, L. Lin, E. Gjika, X. Q. Cheng, J. Canady, and M. Keidar, "Selective Treatment of Pancreatic Cancer Cells by Plasma-Activated Saline Solutions," (in English), Ieee Transactions on Radiation and Plasma Medical Sciences, Article vol. 2, no. 2, pp. 116-120, Mar 2018, doi: 10.1109/trpms.2017.2761192.
  • [57] N. Kumar, P. Attri, S. Dewilde, and A. Bogaerts, "Inactivation of human pancreatic ductal adenocarcinoma with atmospheric plasma treated media and water: a comparative study," (in English), Journal of Physics D-Applied Physics, Article vol. 51, no. 25, p. 10, Jun 2018, Art no. 255401, doi: 10.1088/1361-6463/aac571.
  • [58] M. Ishaq, Z. J. Han, S. Kumar, M. D. M. Evans, and K. Ostrikov, "Atmospheric-Pressure Plasma- and TRAIL-Induced Apoptosis in TRAIL-Resistant Colorectal Cancer Cells," Plasma Processes and Polymers, vol. 12, no. 6, pp. 574-582, Jun 2015, doi: 10.1002/ppap.201400207.
  • [59] Y. S. Ko et al., "Radioresistant breast cancer cells exhibit increased resistance to chemotherapy and enhanced invasive properties due to cancer stem cells," (in English), Oncology Reports, Article vol. 40, no. 6, pp. 3752-3762, Dec 2018, doi: 10.3892/or.2018.6714.
  • [60] P. T. Vernier, Y. H. Sun, L. Marcu, C. M. Craft, and M. A. Gundersen, "Nanoelectropulse-induced phosphatidylserine translocation," (in English), Biophysical Journal, Article vol. 86, no. 6, pp. 4040-4048, Jun 2004, doi: 10.1529/biophysj.103.037945.
  • [61] K. K. Pai, K. Singarapu, J. D. Jacob, and S. V. Madihally, "Dose Dependent Selectivity and Response of Different Types of Mammalian Cells to Surface Dielectric Barrier Discharge (SDBD) Plasma," (in English), Plasma Processes and Polymers, Article vol. 12, no. 7, pp. 666-677, Jul 2015, doi: 10.1002/ppap.201400134.
  • [62] J. He and Y. T. Zhang, "Generation of Reactive Oxygen Species in Helium-Oxygen Radio-Frequency Discharges at Atmospheric Pressure," (in English), Ieee Transactions on Plasma Science, Article vol. 41, no. 10, pp. 2979-2986, Oct 2013, doi: 10.1109/tps.2013.2279678.
  • [63] E. Manaloto et al., "Cold atmospheric plasma induces silver nanoparticle uptake, oxidative dissolution and enhanced cytotoxicity in glioblastoma multiforme cells," (in English), Archives of Biochemistry and Biophysics, Article vol. 689, p. 12, Aug 2020, Art no. 108462, doi: 10.1016/j.abb.2020.108462.
  • [64] K. Pefani-Antimisiari et al., "Synergistic effect of cold atmospheric pressure plasma and free or liposomal doxorubicin on melanoma cells," (in English), Scientific Reports, Article vol. 11, no. 1, p. 15, Jul 2021, Art no. 14788, doi: 10.1038/s41598-021-94130-7.
  • [65] R. Verloy, A. Privat-Maldonado, E. Smits, and A. Bogaerts, "Cold Atmospheric Plasma Treatment for Pancreatic Cancer-The Importance of Pancreatic Stellate Cells," (in English), Cancers, Review vol. 12, no. 10, p. 21, Oct 2020, Art no. 2782, doi: 10.3390/cancers12102782.