KADINLARDA SKUAT MAKSİMAL KUVVET VE YÜZDE GÜÇ DEĞERLERİ İLE DURARAK UZUN ATLAMA VE 30M SÜRAT KOŞU PERFORMANSI ARASINDAKİ İLİŞKİ

GİRİŞ VE AMAÇ: Maksimal kuvvet (1TM) ile 1TM’nin yüzde güç değerlerinin performans parametreleri ile ilişkisinin belirlenmesi, uygulanacak antrenman yükleri açısından değerlidir (McCurdy ve ark. 2010). Bu araştırma, aktif gönüllü bayan üniversite öğrencilerinde skuat maksimal kuvvet (1TM) ve yüzde güç değerleri ile durarak uzun atlama ve 30m sürat koşu performansı arasındaki ilişkiyi tespit etmek amacıyla yapıldı.   GEREÇ VE YÖNTEM: Araştırmaya, beden eğitimi ve spor bölümü on dört aktif bayan öğrenci gönüllü olarak katıldı. Gönüllülerin yaş (21,10 ± 4,60 yıl), boy (163 ± 6 cm), vücut ağırlığı (55,5 ± 5,37 kg) ve vücut kitle indeksi (20,77 ± 2,18 kg/m2) ölçümleri yapıldı. Bacak skuat 1TM Smith Machine cihazı ile çoklu tekrar formülüne göre hesaplandı (Brzycki, 1993). 1TM’nin yüzde güç değerleri, 1TM’nin % 40-50-60-70-80-90 şiddetlerini, kaldırdığı süre ve kat edilen yol dikkate alınarak hesaplandı. Ağırlığı kaldırma süresi Fotosel Cihazıyla (Sport Expert, Tümer Mühendislik, Ankara / Turkiye) belirlendi. Katılımcıların 30m sürat koşu ve durarak uzun atlama performans değerleri saptandı.  Değişkenler Pearson Korelasyonu ve Paired Samples T-testi ile incelendi. Analizler için Windows SPSS 15.0 istatistik paket programı kullanıldı. Sonuçlar 0.05 anlamlılık düzeyi dikkate alınarak incelendi.   BULGULAR: Skuat 1TM ile 30 m sürat koşu performansı (r= -0,642, p<0,05); skuat 1TM ve durarak uzun atlama performansı (r=0,638, p<0,05) arasında ilişki bulundu. T-test sonucuna göre skuat en yüksek güç değeri (EG) 1TM’nin %60-%70-%80 aralığında elde edildi. EG ve durarak uzun atlama arasında yüksek ilişki (r= 0,808, p<0,01); EG ve 30 m sürat koşusu arasında ilişki (r=-0,638, p<0,05) bulundu. Skuat 1TM’nin %50, %40, en yüksek güç değeri ve 30 m sürat koşu performansı (sırasıyla r= -0,648, r= -0,729, r= -0,638; her biri için p<0,05) arasında ilişki saptandı. 1TM’nin %100, %70, %60 ve durarak uzun atlama arasında pozitif ilişki saptandı (sırasıyla r= 0,772, r= 0,757, r= 0,692; her biri için p<0,05).   SONUÇ: Skuat 1TM ve 30 m sürat koşusu; skuat 1TM ve durarak uzun atlama arasında ilişki bulunması,  antrenmanlarda 1TM önemini ortaya koymaktadır. Skuat 1TM’nin %50, %40, en yüksek güç ve 30 m sürat koşu performansıyla ilişki saptanması, dönüşümlü spor dalları için çalışmaların skuat 1TM’nin daha düşük yüzde değerlerinde yapılmasının faydalı olabileceği yönündedir. Yine skuat 1TM’nin % 100, % 70, % 60, en yüksek güç ve durarak uzun atlama arasında ilişki bulunması ise dönüşümsüz spor dalları için antrenmanların skuat 1TM’nin daha yüksek yüzde güç değerlerinde planlanmasının faydalı olabileceğini vurgulamaktadır. Ayrıca, skuat hareketinde güç gelişimi için profesyonel olmayan aktif kadınlarda 1TM’nin %60-%70-%80 yük aralığında çalışmak yararlı olabilir.

___

  • Alcaraz PE, Romero-Arenas S, Vila H, Ferragut C. Power-load curve in trained sprinters. J Strength Cond Res, 2011; 25 (11): 3045-50. doi: 10.1519/JSC.0b013e318212e1fa.
  • Brzycki, M. Strength testing: predicting a one-rep max from reps-to-fatigue. Journal of Health, Physical Education, Recreation, and Dance, 1993; 64: 88-90.
  • Brechue WF, Mayhew JL, Piper FC. Characteristics of sprint performance in college football players. Journal of Strength and Conditioning Research, 2010; 24 (5): 1169-1178.
  • Bompa TP, Haff GG. Periodization Teory and Methodology of Training Fifth Edition. IL. USA: Human Kinetic Champaign;2009; p 272-273.
  • Can İ, Cihan H. Investigating of the relationship between sprint and jump performance with power parameters during propulsive phase of full back squat exercise. Niğde Üniversitesi Beden Eğitimi ve Spor Bilimleri Dergisi, 2015; 9(1): 105-118.
  • Cormie P, McCaulley GO, Triplett NT, McBride JM. Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc. 39(2):340-9, 2007.
  • Cormie P, McGuigan MR, and Newton RU. Adaptations in athletic performance following ballistic power vs strength training. Med Sci Sports Exerc 42: 1582–1598, 2010.
  • Cormie P, McGuigan MR, and Newton RU. Developing maximal neuromuscular power: part 2-training considerations for improving maximal power production. Sports Med 41: 125–146, 2011.
  • Comfort, P, Bullock, N, and Pearson, SJ. A comparison of maximal squat strength and 5-, 10-, and 20-meter sprint times, in athletes and recreationally trained men. J Strength Cond Res 26: 937–940, 2012.
  • Comfort, P, Stewart, A, Bloom, L, and Clarkson, B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J Strength Cond Res 28: 173–177, 2014.
  • Chu, D A. Explosive Power and Strength: Complex Training for Maximum Results. Champaign, IL: Human Kinetics, 1996.
  • Donald A. Chu. Explosive power & strength : complex training for maximum results. Champaign, IL : Human Kinetics, c1996.
  • Harris NK, Cronin JB, Hopkins WG, and Hansen KT. Squat Jump Training at Maximal Power Loads vs. Heavy Loads: Effect on Sprint Ability. J Strength Cond Res 22: 1742–1749, 2008.
  • Haff GG, Nimphius S. Training Principles for Power. Strength and Conditioning Journal. 2012; 34 (6) :2-12. doi: 10.1519/SSC.0b013e31826db467.
  • Haff GG, Carlock JM, Hartman MJ, Kilgore JL, Kawamori N, Jackson JR, Morris RT, Sands WA, and Stone MH. Force-time curve characteristics of dynamic and isometric muscle actions of elite women olympic weightlifters. J Strength Cond Res 19: 741–748, 2005.
  • Kawamori N and Haff GG. The optimal training load for the development of muscular power. J Strength Cond Res 18: 675–684, 2004.
  • McBride, JM, Blow, D, Kirby, TJ, Haines, TL, Dayne, AM, and Triplett, NT. Relationship between maximal squat strength and five, ten, and forty yard sprint times. J Strength Cond Res 23: 1633–1636, 2009.
  • McCurdy KW, Walker JL, Langford GA, Kutz MR, Guerrero JM, McMillan J. The relationship between kinematic determinants of jump and sprint performance in division I women soccer players. Journal of Strength and Conditioning Research, 2010; 24(12): 3200-3208.
  • McBride JM, Triplett-McBride T, Davie A, and Newton RU. The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res 16: 75–82, 2002.
  • Moss BM, Refsnes PE, Abildgaard A, Nicolaysen K, and Jensen J. Effects of maximal effort strength training with different loads on dynamic strength, crosssectional area, load-power and loadvelocity relationships. Eur J Appl Physiol 75: 193–199, 1997.
  • Romero S, Vila H, Ferragut C, Alcaraz PE. Power-strength curve in basketball players. Revista de Psicología del Deporte, 2009; 18: 425-428, ISSN;1132-239X.
  • Serin E, Taşkın H. Anaerobik dayanıklılık ile dikey sıçrama arasındaki ilişki. Spor ve Performans Arastırmaları Dergisi. 2016; (7) 1: 37-43. doi: 10.17155/spd.86991.
  • Sleivert G, Taingahue M. The relationship between maximal jump-squat power and sprint acceleration in athletes. Eur J Appl Physiol, 2004; 91: 46–52. doi: 10.1007/s00421-003-0941-0
  • Stone MH, Moir G, Glaister M, and Sanders R. How much strength is necessary?Phys Ther Sport 3: 88–96, 2002.
  • Thomas GA, William JT, Barry AK. Jeff SS, Jeffrey V, Anderson M, et al. Maximal power at different percentages of one repetition maximum: influence of resistance and gender. Journal of Strength and Conditioning Research, 2007; 21 (2): 336-342.
  • Toji H and Kaneko M. Effect of multipleload training on the force-velocity relationship. J Strength Cond Res 18: 792–795, 2004.
  • Thomas, M,, M.A, Fiatarone and RA. Fielding. Leg power in young women: Relationship to body composition, strength, and function. Med. Sci. Sports Exerc. 28:1321-1326. 1996.
  • Zamparo P, Minetti AE, and di Prampero PE. Interplay among the changes of muscle strength, cross-sectional area and maximal explosive power: theory and facts. Eur J Appl Physiol 88: 193–202, 2002.
  • Wilmore JH, Costil DL, Kenney WL. Physiology of sport and exercise. 4th ed, IL. USA: Human Kinetic Champaign; 2008; p.188.