Asfalt Kaplamalarda Bitüm Oranına Bağlı Olarak Sıkıştırma Sıcaklığının Etkisinin Marshall Deneyi Parametreleri ile İncelenmesi

Asfalt kaplamaların sıkıştırma sıcaklığının kontrol altına alınması kaplamadan beklenen performansın sağlanması açısından en önemli konulardan birisidir. Tasarım ve üretim aşamalarında ne kadar dikkat edilse de serme ve sıkıştırma aşamalarında karışım sıcaklığında bir miktar homojensizlikler ortaya çıkabilmektedir. Bu çalışmada aşınma tabakası tip 1A’ya göre dizayn edilmiş yoğun gradasyonlu asfalt kaplamalar için optimum bitüm içeriği %5,1 olarak hesaplanmış, bu değerinin altında ve üstünde (4,8; 4,9; 5,0; 5,0; 5,2; 5,3; 5,4) bitüm oranlarında hazırlanan asfalt karışımlar 143 °C ve 137 °C sıkıştırma sıcaklığında imal edilmiştir. Asfalt karışım örnekleri pratik yoğunluk, akma, stabilite ve Marshall oranı parametreleri ile değerlendirilmiştir. Çalışma sonucunda, 143 °C sıkıştırma sıcaklığında 137 °C’ye göre daha yüksek Marshall stabilite değerlerinin elde edilebildiği, optimum bitüm oranından daha yüksek artan değerlerde bitüm oranının artmasıyla akma değerlerinin artmakta olduğu ve 143 °C sıkıştırma sıcaklığında 137 °C değerine göre daha düşük akma değerleri oluştuğu gözlemlenmiştir. Stabilite değerlerindeki standart hatanın 143 °C sıcaklıkta daha düşük olduğu, sıkıştırma işlemi yapılırken, homojenlik anlamında, düşük sıcaklıklarda daha çok dikkat edilmesi gerektiği anlaşılmıştır.

Investigation of The Effect of Compaction Temperature Depending on Bitumen Ratio on Asphalt Pavements with Marshall Test Parameters

Controlling the compaction temperature of asphalt pavements is one of the most important issues in terms of providing the expected performance from the pavement. No matter how much care is taken in the design and production stages, some inhomogeneities may occur in the mixing temperature during the laying and compaction stages. In this study, the optimum bitumen content was calculated as 5,1% for dense graded asphalt pavements designed according to wear layer type 1A, below and above this value (4,8; 4.9; 5,0; 5,0; 5,2; 5,3; 5,4) asphalt mixtures prepared at bitumen ratios of were produced at compaction temperatures of 143 °C and 137 °C. Asphalt mix samples were evaluated with practical density, flow, stability and Marshall quotient parameters. As a result of the study, it was found that higher Marshall stability values could be obtained at 143 °C compaction temperature than 137 °C, Marshall flow values increased with increasing bitumen ratio at higher values than optimum bitumen ratio, and lower flow values compared to 137 °C at 143 °C compaction temperature values have been observed. It has been understood that the standard error in the stability values is lower at 143 °C, and more attention should be paid at low temperatures in terms of homogeneity while compacting.

___

  • Ahmedzade, P., Alataş, T., Geçkil, T. (2007). The effect of carbon black on the mechanıcal propertıes of asphalt mixtures. Journal of Engineering and Natural Sciences, 25(2), 179-189.
  • Asphalt Institute. (1993). Mix designs methods for asphalt concrete and other hot mix types. Asphalt Institute, Lexington, KY.
  • ASTM D6926-20. (Jan 27, 2020). Standard Practice for Preparation of Asphalt Mixture Specimens Using Marshall Apparatus.
  • ASTM D6927-15. (Nov 07, 2022). Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures.
  • Betancourt-Jimenez, D., Montoya, M., Haddock, J., P. Youngblood, J., J. Martinez, C. (2022). Regulating asphalt pavement temperature using microencapsulated phase change materials. Construction and Building Materials, 350, 128924.https://doi.org/10.1016/j.conbuildmat.2022.12894
  • BS EN 12697-34:2020. This standard BS EN 12697-34:2020 Bituminous mixtures. (03.04.2020). Test methods is classified in these ICS categories: 93.080.20 Road construction materials.
  • Capitão, S., Picado-Santos, L., Martinho, F. (2012). Pavement engineering materials: Review on the use of warm-mix asphalt. Construction and Building Materials, 36, 1016-1024.https://doi.org/10.1016/j.conbuildmat.2012.06.038
  • DeSombre, R., Newcomb, D.E., Chadbourn, B., Voller, V. (1998). Parameters to define the laboratory compaction temperature range for hot mix asphalt. Journal of the Association of Asphalt Paving Technologists, 67, 125−152.
  • Ivica Androjić, I., Dimter, S. (2015). Influence of compaction temperature on the properties of marshall specimens. The Baltıc Journal of Road and Bridge Engineering, 10(4), 309–315. https://doi.org/10.3846/bjrbe.2015.39 Karayolu Teknik Şartnamesi. (KTŞ) (2013). Karayolları Genel Müdürlüğü, Ankara.
  • Keymanesh, M.R., Kie-Badroodi, S., Haghighatpour, P.J. (2014). An examination of the effect of bitumen content on the performance of moisture susceptibility of asphalt mixture under freeze-thaw cycles. International Journal of Engineering Innovation and Research, 3(6), 909-914.
  • Kok, B.V., Yilmaz, M. (2009). The effects of using lime and styrene–butadiene–styrene on moisture sensitivity resistance of hot mix asphalt. Construction and Building Materials, 23(5), 1999-2006. https://doi.org/10.1016/j.conbuildmat.2008.08.019
  • Kütük-Sert, T., Kütük, S. (2012). Physical and Marshall properties of borogypsum used as filler aggregate in asphalt concrete. Journal of Materials in Civil Engineering, 25(2), 234-243. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000580
  • Li, P., Ding, Z., Zhang, Z. (2013). Effect of temperature and frequency on visco-elastic dynamic response of asphalt mixture. Journal of Testing and Evaluation, 41(4), 571–578. https://doi.org/10.1520/JTE20120044
  • McGennis, R.B., Anderson, R.M., Perdomo, D., Turner, P. (1996). Issues pertaining to use of the superpave gyratory compactor. Transportation Research Record, 1543, 139–144. https://doi.org/10.1177/0361198196154300118
  • Mistry, R., Roy, T.K. (2020). Predicting marshall stability and flow of bituminous mix containing waste fillers by the adaptive neuro-fuzzy inference system. Revista de la Construcción, 19(2). http://dx.doi.org/10.7764/rdlc.19.2.209
  • Newcomb, D.E., Stroup-Gardiner, M., Epps, J.A. (1992). Laboratory and field studies of polyolefin and latex modifiers for asphalt mixtures. Polymer modified asphalt binders, 129–150. https://doi.org/10.1520/STP17830S
  • Ogundipe, O.M. (2016). Marshall stability and flow of lime-modified asphalt concrete. Transportation Research Procedia, 14, 685–693. https://doi.org/10.1016/j.trpro.2016.05.333
  • Panda, R.P., Das, S.S., Sahoo, P.K. (2017). Optimum bitumen content for bituminous concrete – an alternative approach for estimation. International Journal of Civil Engineering and Technology (IJCIET), 8(10), 435–453.
  • Polo-Mendoza, R., Rita, P.N., Filippo, G., Gilberto, MA. (2022). Eco-friendly design of warm mix asphalt (WMA) with recycled concrete aggregate (RCA): A case study from a developing country. Construction and Building Materials, 326, 126890. https://doi.org/10.1016/j.conbuildmat.2022.126890
  • Rahmat, N.A., Hassan, N.A., Jaya, R.P., Mohd Satar, M.K.I., Mohd Azahar, N., Ismail, S., Hainin, M.R. (2019). Effect of compaction temperature on the performance of dense-graded asphalt mixture. National Colloquium on Wind and Earthquake Engineering IOP Conference Series: Earth and Environmental Science, 012012. https://doi.org/10.1088/1755-1315/244/1/012012
  • R. SNI 03 1737-1989, Pedoman pelaksanaan lapis campuran beraspal panas - Revisi SNI 03 1737-1989. (Badan Penelitian dan Pengembangan PU, Bandung) 2005; 1-47.
  • Saedi, H. (2012). Assessment of compaction temperatures on hot mix asphalt (HMA) properties. International Science Index, World Academy of Science, Engineering and Technology, 6, 179–183. https://doi.org/10.5281/zenodo.1059439
  • Saltan, M., Uysal, F. (2018). Vermikülitin bitümlü sıcak karışımlarda kullanılabilirliğinin marshall stabilite deney yöntemi ile araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 253- 257. https://doi.org/10.19113/sdufbed.35525
  • Stas, R., Miro, O., Al-Shalout, I. (2007). Effects of moisture, compaction temperature and gradation types on durability of asphalt concrete mixtures. Damascus University Journal, 23(2), 7–35.
  • Sun, P., Zhang, K., Han, S., Liang, Z., Kong, W., Zhan, X. (2022). Method for the evaluation of the homogeneity of asphalt mixtures by 2-Dimensional Image Analysis. Materials, 15, 4265. https://doi.org/10.3390/ma15124265
  • TSE - TS EN 12697-8, Bituminous mixtures (8 February 2005). Test methods for hot mix asphalt - Part 8: Determination of void characteristics of bituminous specimens.
  • TSE – TS EN 12697-30, Bituminous mixtures (29 April 2019). Test methods - Part 30: Specimen preparation by impact compactor.
  • Vincent, T. H. CHU. (2010). A Self Learning Manual – Mastering Different Fields of Civil Engineering Works. VC-Q-A-Method.
  • Yan, T., Turos, M., Le, J.L., Marasteanu, M. (2022). Reducing compaction temperature of asphalt mixtures by gnp modification and aggregate packing optimization. Materials, 15, 6060. https://doi.org/10.3390/ma15176060
  • Youness Ahmed, H. (2007). Methodology for determining most suitable compaction temperatures for hot mix asphalt. Journal of Engineering Sciences, 35(5), 1235-1253. https://doi.org/10.21608/jesaun.2007.114551
  • Zarei, M., Taghizadeh, M.R., Moayedi, S.S., Naseri, A., Al-Bahrani, M., Khordehbinan, M.W. (2022). Evaluation of fracture behavior of warm mix asphalt (WMA) modified with hospital waste pyrolysis carbon black (HWPCB) under freeze–thaw damage (FTD) at low and intermediate temperatures. Construction and Building Materials, 356, 129184. https://doi.org/10.1016/j.conbuildmat.2022.129184