Türkiye’de Ticari Ölçekli OKSİ-DAY Karbon Yakalama Tesisinin Tekno-Ekonomik Fizibilite Çalışması

Oksi-yakıt yanma teknolojisi kömür yakıtlı enerji santrallerinde karbondioksit emisyonlarının azaltılması için fosil yakıtların temiz kullanımını sağlayayabilecek umut vaat eden bir teknolojidir. Sirkülasyonlu akışkan yataklı (DAY) kazanlar, oksi-yakıt yanma tasarımını başarıyla kullanabilen güç üretim teknolojilerinden biridir. Bu çalışmada, 550 MWnet güç üreten ve % 90 CO2 yakalama oranına sahip ticari ölçekli bir oksi-yakıt yanma dolaşımlı akışkan yataklı (oksi-DAY) santralin tekno-ekonomik fizibilite analizi yapılmıştır. Oksi-pulverize sistem enerji santrallerinin ekonomik analizi birçok raporda incelenmiştir. Fakat, oksi-DAY sistem enerji santralleri maliyeti hakkında çok fazla çalışma bulunmamaktadır. Bu çalışma, yeni kurulumu planlanan bir oksi-DAY karbon yakalama tesisi ekonomik analizi için ilk kez bir Türk linyiti (Orhaneli kömürü) kullanmıştır. Ekonomik performans göstergeleri, maliyet ölçeklendirme ve İndirgenmiş Nakit Akışı analizi yöntemleri ile bulunmuştur. Temel olarak üç durum analiz edilmiştir. İlk durumda, bir baz senaryo (CO2 yakalama ünitesi olmayan hava ateşlemeli DAY tesisi) tasarlanmış, bu temel senaryoya dayanarak diğer durumlar modellenmiştir. Böylece, klasik hava ateşlemeli DAY sisteminden CO2 yakalama ve sıkıştırma üniteli oksi-DAY sistemine geçişin ekonomik uygulanabilirliği değerlendirilmiştir. Yanma sonrası monoetanolamin (MEA) bazlı CO2 yakalama sistemi, oksi-DAY CO2 yakalama sistemi performansını karşılaştırmak için bir kıyaslama çalışması olarak incelenmiştir. Elektrik maliyeti (COE), indirgenmiş elektrik maliyeti (LCOE) ve CO2 yakalama maliyeti gibi ana uygulanabilirlik parametreleri hesaplanmıştır. Elde edilen sonuçlar, klasik hava ateşlemeli DAY tesisi ile karşılaştırıldığında, oksi-DAY tesisi toplam tesis maliyeti ve COE açısından sırasıyla % 54 ve % 52'lik bir artış göstermektedir. Amerikan Enerji Bakanlığı (DOE)'nın SC-PC sistemler için belirlediği COE hedef değeri göz önüne alındığında, tasarlanan oksi-DAY enerji santrali COE değeri hava ile çalışan hedef SC-PC COE değerinden % 45 fazladır. Tasarlanan Oksi-DAY tesisi için verimlilik cezası % 10'dur. Oksi-DAY tesisi, amin bazlı CO2 yakalama sisteminden % 2 puan daha yüksek net verimliliğe sahiptir. Amin bazlı sistemde; sermaye maliyeti, LCOE ve CO2 yakalama maliyeti oksi-CFB tesisinden daha yüksektir. Sonuçlar, oksi-DAY enerji santralinin, amin bazlı yakalama tesisine kıyasla karbon tutma maliyetlerinin daha düşük olduğunu göstermektedir.

Techno-economic feasibility study of the commercial-scale oxy-cfb carbon capture system in Turkey

Oxy-fuel combustion is a promising technology for the reduction of carbon dioxide emissions, in coal-fired power plants that allowthe clean use of fossil fuels. Circulating fluidized bed (CFB) boilers are one of the power generation technologies that can use oxyfuel combustion design successfully. The purpose of this paper is to perform the techno-economic feasibility analysis of thecommercial-scale oxy-fuel combustion circulating fluidized bed (oxy-CFB) power plant generating 550 MWe net power with acarbon capture rate of 90%. So far, economic analysis of oxy-PC power plants has been studied by researchers at many reports.Nevertheless, the cost of an oxy-CFB power plant has rarely been studied.This is the first study that has used Turkish lignite(Orhaneli Coal) in an oxy-CFB carbon capture plant economic analysis. The basic economic performance indicators wereinvestigated. The Models are based on cost scaling and Discounted Cash Flow analysis. Three cases were analyzed: In the firstcase, A base scenario (air-fired CFB plant without CO2 capture) is considered and then based on this baseline scenario the otherscenarios are taken into account. The economic viability of transition from the classical air-fired CFB plant system to oxy-CFBwith CO2 capture and compression plant is evaluated. The post-combustion monoethanolamine (MEA) based CO2 capture systemis investigated as a benchmark study to compare oxy-CFB capture system performances. The main applicability parameters suchas cost of electricity (COE), levelized cost of electricity (LCOE) and the cost of CO2 capture for each case are calculated. Theobtained results indicated that 54% and 52% increase in terms of total plant cost and COE respectively in the oxy-CFB plant whencompared to air fired-CFB without carbon capture. Considering the COE, the designed oxy-CFB power plant is greater than theair-fired SC-PC (without capture) plant by more than 45% (DOE target). The efficiency penalty for oxy-CFB is 10%. Oxy-CFBplant has a net efficiency 2% point higher than amine-based CO2 capture systems. In amine-based CO2 capture system; The capitalcosts, LCOE, and cost of CO2 captured are higher than the oxy-CFB plant. The results show that the oxy-CFB power plant has alower cost for carbon capture compared to amine-based capture plant.

___

  • [1] https://www.carbonbrief.org/mapped-worlds-coalpower-plants.2019
  • [2] http://www.invest.gov.tr/enUS/infocenter/publications/Documents/ENERGY.INDU STRY.pdf.
  • [3] M. Varol, A.T. Atimtay, H. Olgun, H. Atakül, ''Emission characteristics of co-combustion of a low calorie and high sulfur – lignite coal and woodchips in a circulating fluidized bed combustor : Part 1 . Effect of excess air ratio'', Fuel, 117:792–800, (2014).
  • [4] https://webstore.iea.org/coal-information-2018.
  • [5] www.iea.org , ''Operating ratio and cost of coal power generation'',
  • [6] www.iea.org/t&c/.2016, E. Policies, I.E.A. Countries, Energy Policies of IEA Countries 2016 Review Turkey,.
  • [7] A. Dryjańska, ''Supercritical power plant 600 MW with cryogenic oxygen plant and CCS installation'', Thermodynamics, 34: 123–136, (2013)
  • [8] C.C. Cormos, ''Oxy-combustion of coal, lignite and biomass: A techno-economic analysis for a large scale Carbon Capture and Storage (CCS) project in Romania'', Fuel, 169: 50–57, (2016).
  • [9] J.H. Moon, S.H. Jo, S.J. Park, N.H. Khoi, M.W. Seo, H.W. Ra, S.J. Yoon, S.M. Yoon, J.G. Lee, T.Y. Mun, ''Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed'', Energy, 166: 183–192, (2019).
  • [10] B. Leckner, A. Gómez-Barea, ''Oxy-fuel combustion in circulating fluidized bed boilers'', Appl.Energy, 125: 308–318, (2014).
  • [11] https://www.cmu.edu/ceic/assets/docs/publications/phddissertations/2015/kyle-borgert-phd-thesis-2015.pdf. (2015)
  • [12] H. Wang, Y. Duan, Y. ning Li, Y. Xue, M. Liu, ''Investigation of mercury emission and its speciation from an oxy-fuel circulating fluidized bed combustor with recycled warm flue gas'', Chem. Eng. J., 300: 230– 235, (2016).
  • [13] https://www.netl.doe.gov/, ''Cost and Performance for Low-Rank Pulverized Coal Oxycombustion Energy Plants'', DOE-NETL (2010)
  • [14] J. Xiong, H.B. Zhao, C.G. Zheng, ''Techno-economic evaluation of oxy-combustion coal-fired power plants'', Chinese Sci. Bull, 56: 3333–3345, (2011).
  • [15] L. Duan, C. Zhao, W. Zhou, C. Qu, X. Chen, ''Effects of operation parameters on NO emission in an oxy-fired CFB combustor'', Fuel Process. Technol, 92: 379-384, (2011).
  • [16] C.Cormos,''Techno-economicand environmental evaluations of large scale gasification-based CCS project in Romania'' , Int. J. Hydrogen Energy, 39: 13–27, (2013).
  • [17] T. Lockwood, ''Techno-economic analysis of PC versus CFB combustion'', IEA Clean Coal Centre, CCC/226 (2013).
  • [18] S. Li, H. Li, W. Li, M. Xu, E.G. Eddings, Q. Ren, Q. Lu, ''Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1 MWth pilot-scale oxy-fuel circulating fluidized bed'' , Appl. Energy, 19: 203–211, (2017).
  • [19] S. Espatolero, L.M. Romeo, A.I. Escudero, R. Kuivalainen, ''An operational approach for the designing of an energy integrated oxy-fuel CFB power plant'' , Int. J. Greenh. Gas Control., 64: 204–211, (2017).
  • [20] S. Espatolero, L.M. Romeo, ''Optimization of Oxygenbased CFBC Technology with CO2 Capture'', Energy Procedia,114: 581–588. (2017).
  • [21] K. Myöhänen, R. Diego, R. Kuivalainen, T. Hyppänen, ''Modelling Supported Development of Oxy-CFB Combustion'', Energy Procedia, 114: 589–599, (2017).
  • [22] https://www.iea-coal.org/the-role-of-circulatingfluidised-bed-cfb-technology-in-future-coal-powergeneration/
  • [23] S. Seddighi, P.T. Clough, E.J. Anthony, R.W. Hughes, P. Lu, ''Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds'', Appl. Energy, 232: 527–542, (2018).
  • [24] https://callideoxyfuel.com/.2018, C. Spero, Toshihiko Yamada, ''Callide Oxyfuel Project-FinalResults'',
  • [25] R. López, M. Menéndez, C. Fernández, A. BernardoSánchez, ''The effects of scale-up and coal-biomass blending on supercritical coal oxy-combustion power plants'', Energy, 148: 571–584, (2018).
  • [26] A. Pettinau, F. Ferrara, C. Amorino, ''Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy'', Appl. Energy, 99: 32–39, (2012).
  • [27] K.J. Borgert, E.S. Rubin, ''Oxy-combustion Carbon Capture for Pulverized Coal in the Integrated Environmental Control Model'', Energy Procedia., 114: 522–529, (2017).
  • [28] M. Van Der Spek, N.H. Eldrup, R. Skagestad, A. Ramirez, ''Techno-economic Performance of State-ofthe-Art Oxyfuel Technology for Low-CO2 Coal-fired Electricity Production'', Energy Procedia, 114: 6432– 6439, (2017).
  • [29] R. López, C. Fernández, O. Martínez, M.E. Sánchez, ''Techno-economic analysis of a 15 MW corn-rape oxycombustion power plant'', Fuel Process Technology, 142: 296–304, (2016).
  • [30] T. Wall, Y.A. Liu, S. Bhattacharya, ''A scoping study on Oxy-CFB technology as an alternative carbon capture option for Australian black and browncoals'',2012. https://hub.globalccsinstitute.com/sites/default/files/publ ications/33801/scoping-study-oxy-cfb-technologyalternative-carbon-capture-option-australian-black-andbrown-coals.pdf (accessed July 2, 2019).
  • [31] H. Okutan, A. Yozgatligil, B. Engin, H. Olgun, A. Atimtay, ''Dolaşımlı Akışkan Yatak Yakma Sisteminde Linyit ve Biyokömürün Oksijence Zengin Ortamda Yakılması'' ( OKSİYANMA ) TÜBİTAK-1003, 213M525 Sonuç Raporu, TÜBİTAK 2017.
  • [32] B. Ye, J. Jiang, Y. Zhou, J. Liu, K. Wang, ''Technical and economic analysis of amine-based carbon capture and sequestration at coal-fired power plants'', J. Clean. Prod., 222: 476–487 (2019).
  • [33] https://www.netl.doe.gov/,''Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision3'',DOE/NETL-2010/1397.
  • [34] https://www.netl.doe.gov/,''Low Rank Coal to Electricity : Combustion Cases, Combustion''. (2011). [35] https://www.netl.doe.gov/,Cost E stimation Methodology for NETL Assessments of Power Plant Performance, DOE/NETL-2011/1455, (2011).
  • [36] https://www.netl.doe.gov/, Power Systems Financial Model Version 6.6 User’s Guide, DOE/NETL2011/1492.
  • [37] https://www.netl.doe.gov/ , Power Plant Flexible Model Technical Documentation and User’s Manual, DOE/NETL-2013/1607
  • [38] J.P. Tranier, R. Dubettier, A. Darde, N. Perrin, ''Air Separation, flue gas compression and purification units for oxy-coal combustion systems'', Energy Procedia, 4: 966–971, (2011).
  • [39] T. Lockwood, ''Techno-economic analysis of PC versus CFB combustion'', IEA Clean Coal Centre, CCC/226 (2013).
  • [40] D.P. Hanak, D. Powell, V. Manovic, ''Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage'', Appl. Energy, 191: 193–203, (2017).
  • [41] https://www.chemengonline.com/tag/cepci/ (accessed December 12, 2019).
  • [42] Q. Zhu, ''Developments in circulating fluidised bed combustion'', IEA Clean Coal Cent., 13/7 (2013).
  • [43] http://www.invest.gov.tr.,Ministry of Labor and Social Security of the Republic of Turkey, Labor Force and Employment in Turkey, (2010) .
  • [44] https://www.netl.doe.gov/,''Techno-economic evaluation of utility-scale power plants based on the indirect sCO2 Brayton cycle'', NETL_PUB_21490
  • [45] E.S. Rubin, J.E. Davison, H.J. Herzog, 'The cost of CO2 capture and storage', Int. J. Greenh. Gas Control, 40: 378–400, (2015).
  • [46] S.A.Y. W. Follett, M. A. Fitzsimmons, S. V. Pisupati, C. G. Sonwane, S. Jovanovic, T. W. Manley, D. Hiraoka, ''Development of a pilot scale coal coal powered oxyfired pressurized fluidized bed combustor wity CO2 capture'', Power-Gen Eur. Conf., 1–17, (2015).
  • [47] R.T.J. Porter, M. Fairweather, C. Kolster, N. Mac Dowell, N. Shah, R.M. Woolley, ''Cost and performance of some carbon capture technology options for producing different quality CO2 product streams'', Int. J. Greenh. Gas Control., 57: 185–195. (2017).
  • [48] https://www.netl.doe.gov/, NETL Updated Costs (2011 Basis) for selected Bituminous Baseline Cases, DOE/NETL-341/082312
  • [49] K. Gerdes, R. Stevens, T. Fout, J. Fisher, G. Hackett, W. Shelton, ''Current and future power generation technologies: Pathways to reducing the cost of carbon capture for coal-fueled power plants'', Energy Procedia, 63: 7541–7557, (2014).
  • [50] https://www.energy.gov/fe/science-innovation/carboncapture-and-storage-research/carbon-capture-rd (accessed December 12, 2019).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

A New Approach to Minimize Memory Requirements of Frequent Subgraph Mining Algorithms

TURGAY TUGAY BİLGİN, Turgay Tugay BİLGİN

Nesnelerin İnterneti (IoT) ve Kablosuz Algılayıcı Ağların Güvenliğine Yapılan Saldırıların Tespit Edilmesi ve Önlenmesi

Oğuzhan TAŞ, Farzad KIANI

Estimating Daily Pan Evaporation Data using Adaptive Neuro Fuzzy Inference System: Case Study within Van Local Station-Turkey

Nadire ÜÇLER, Fatih KUTLU

Frequency Response of an Initially Stressed Slab Made from Three Compressible Materials

AHMET DAŞDEMİR

TM ile Üretilen Ti3SiC2-KNF Kompozit Malzemelerin Mikroyapı ve Mekanik Özellikleri

Faik OKAY, Serkan ISLAK, Abdualkarim Musbah M. GARİBA, Ibtesam Said Shneeb SAİD

Türkiye’de Ticari Ölçekli OKSİ-DAY Karbon Yakalama Tesisinin Tekno-Ekonomik Fizibilite Çalışması

Tuba COSKUN, Mehmet OZKAYMAK, Hasan Can OKUTAN

Dikdörtgen ve Daire Kesitli Yığma Narin Kolonların Burkulma Yüklerinin Karşılaştırılması

M. Arif GÜREL, Rabia İZOL, Beyhan İPEKYÜZ, Halet Almıla Arda BÜYÜKTAŞKIN, R. Kadir PEKGÖKGÖZ

Turboşarjlı Enjeksiyonlu Benzinli Bir Motorda LPG Kullanımının Emisyonlar ve Motor Performansı Açısından İncelenmesi

Mehmet AKÇAY, Erdinç VURAL

Yüzey Geometrisinin Mermi Aerodinamik Davranışları Üzerine Etkisinin Nümerik İncelenmesi

Selçuk SELİMLİ

Günlük Tava Buharlaşma Verilerinin Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi Kullanılarak Tahmini: Van Bölge İstasyonu-Türkiye Örneği

Nadire ÜÇLER, Fatih KUTLU