Residual error estimation for the linear difference equations system having constant coefficients under two-point boundary values

Günümüzde bilgisayar teknolojisindeki gelişmelere paralel olarak matematiksel problemlerin bilgisayarla çözülmesi önem kazanmıştır. Bilgisayarlar sadece reel sayıların bir alt kümesi olan rasyonel sayılarla çalıştığından bilgisayarla yapılan hesaplamalarda bazı hesap hataları meydana gelir. Bu çalışmada aşağıdaki ayrılabilir sınır şartlı iki-nokta sınır değer problemi için rezidü hata tahminine dikkat çekiyoruz: $\biggl \{ \begin {array} {ll} x(n+1)=Ax(n) \\ Lx(n_0)= \phi; Rx(n_1)= \psi; \{n:n,n_o,n_1\in Z,n_o\leq n \leq n_1\} \end {array}$ Burada A, L ve R matrisleri sırasıyla NxN, kxN ve (N-k)xN tipinde reel matrisler, $\phi$ ve $\psi$ sırasıyla N ve N-k bileşenli reel kolon vektörleridir. Bilindiği gibi bu problemin rezidü vektörü f(n) = y(n+l) - Ay(n) şeklinde verilebilir. Burada $Ly(n_0) = \tilde{\phi}$, $Ry(n_1)=\tilde{\psi}$ dir. Böylece aşağıdaki problemi elde ederiz: $\biggl \{ \begin {array} {ll} y(n+1)=Ay(n)+f(n) \\ Ly(n_0)= \tilde {\phi}; Ry(n_1)= \tilde {\psi}; \{n:n,n_o,n_1\in Z,n_o\leq n \leq n_1\} \end {array}$ Burada y(n) çözümü verilen problemin bilgisayarda hesaplanan çözümüdür.

Sabit katsayılı lineer iki nokta sınır değerli fark denklem sistemi için kalıntı hata tahmini

Nowadays solving mathematical problems with computer have been taken important affords parallel to the developments of computer technologies. Since computers are using only rational subsets of the real numbers usually have some calculating errors. In this study taking attention to these we deal with the following two-point boundary value problem (TPBVP) with seperated boundary conditions specially with the residual error estimation : $\biggl \{ \begin {array} {ll} x(n+1)=Ax(n) \\ Lx(n_0)= \phi; Rx(n_1)= \psi; \{n:n,n_o,n_1\in Z,n_o\leq n \leq n_1\} \end {array}$ Where A NxN matrix, L kxN matrix and R (N-k)xN matrix are real matrices, $\phi$ and $\psi$ are real column vectors of N and N-k orderly. It is known that the residue of this problem can be given as f(n) = y(n+1) - Ay(n) where $Ly(n_0) = \tilde{\phi}$, $Ry(n_1)=\tilde{\psi}$. Therefore we obtain the following problem: $\biggl \{ \begin {array} {ll} y(n+1)=Ay(n)+f(n) \\ Ly(n_0)= \tilde {\phi}; Ry(n_1)= \tilde {\psi}; \{n:n,n_o,n_1\in Z,n_o\leq n \leq n_1\} \end {array}$ Here y(n) is the computed solution by computers of the given problem.

___

  • 1. Akın Ö., Bulgak H., Linear Difference Equations and Stability Theory, Selçuk University, Turkey, 1998.
  • 2. Doğan N., Numerical Solutions By Guarantied Accuracy Method Of Two-Point Boundary Value Problem For Ordinary Discrete Equation System With Constant Coefficients, Ph.D. Thesis, Ankara University, 1999.
  • 3. Elaydi Saber N., An Introduction to Difference Equations, Springer-Verlag New York Inc., 1996.
  • 4. Golup G.H., Ortega M.J., Scientific Computing and Differential Equations, Academic Press, Inc., New York, 1992.
  • 5. Demmel J.W., Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
  • 6. Agarwal Ravi P., Difference Equations and Inequalities Theory Methods and Applications, Second Edition, Revised and Expanded, Marcel Dekker, Inc., New York, 2000.
  • 7. Murty K.N., Anand P.V.S. and Prasannam Lakshmi V., First Order Difference System- Existence and Uniqueness, Proceedings of The American Mathematical Society, Volume 125, Number 12. December 1997. Pages 3533-3539.
  • 8. Rubio J.E., The Theory of Linear Systems, Academic Press, New York, 1971.
  • 9. Szafranski Z. and Szmanda B., Oscillatory Behavior of Difference Equations of Second Order, Journal of Mathematical Analysis and Applications, 150, 1990, 414-424
  • 10. Kolla S. R., Farison J. B., Techniques in Reduced-Order Dynamic Compensator Design for Stability Robustness of Linear Discrete-Time Systems, Control and Dynamic Systems, Vol.63,1994, 77-128.
  • 11. Ogata K., Discrete-Time Control Systems, Prentice Hall, Englewood Cliffs, NJ, 1987.
  • 12. Bryson A.E., Chi Ho-Yu, Applied optimal control. Optimization, estimation and control, Waltman, Massachusetts: Blaisdell, 1969, 544 p.
  • 13. Anderson B.D.O., Kokotovich P.V., Optimal Control Problems over large time interval, Automatics, Vol. 23, N.3, 1987, 355-363.
  • 14. H.Jasak, A.D.Gosman, Element residual error estimate for the finite volume method, Computers & Flueds xxx (2002) xxx-xxx (Article in Press).
  • 15. Henk A. Van Der VORST and Qiang Ye, Residual Replacement Strategies For Krylov Subspace Iterative Methods For The Convergence of True Residuals, SIAMJ.SCI.COMPUT. Vol. 22, No. 3, pp. 835-852(2000).
  • 16. Peter R. TURNER, Residue polynomial systems, Theoretical Computer Science 279 (2002) 29-49.
  • 17. Govind Menon, Glaucio H. Paulino, Subrata Mukherjee, Analysis of hyper residual error estimates in boundary element methods for potential problems, Comput. Methods. Appl. Mech. Engrg. 1868 (1999) 449-473.
  • 18. F.Mazzia, I. Sgura, Numerical approximation of nonlinear BVPs by means of BVMs, Applied Numerical Mathematics xxx(xxxx) xxx-xxx (Article in Press).
  • 19. Pravir K.Dutt , Smita Bedekar , Spectral methods for hyperbolic initial boundary value problems on parallel computers, Journal of Computational and Applied Mathematics 134 (2001)165-190.
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ