Modifiye Edilmiş NACA-0015 Kanat Yapısında Tüberkül Etkisinin Sayısal Analizi

Bu çalışmada, kambur balinanın aerodinamik özellikleri, NACA-0015 kanat modeline uygulanarak kanat performansı incelenmiştir. Kambur balinanın avını takip etmesi ve yakalaması esnasındaki manevra kabiliyetinden ilham alınarak, NACA-0015 kanadının hücum kenarı bölgesine aynı dalga boyunda (w) ve farklı genlikteki (a) tüberküller yerleştirilmiştir. Elde edilen 3 farklı modifiyeli NACA-0015 kanadı ile düz kanat, aerodinamik performans açısından karşılaştırılmıştır. Bu çalışmada kullanılan modifiye NACA-0015 kanatlarının dalga boyu değeri, chord(veter)  uzunluğunun %16’sı ve genliklerin değeri ise sırasıyla chord uzunluğunun %0,05, %0,1 ve %0,15’i olarak belirlenmiştir. Kanat yapıları Solidwoks CAD programında tasarlanmıştır. ANSYS Fluent yazılımında ortalama Navier-Stokes analiz yönteminde k-epsilon realizable türbülans modeliyle sayısal olarak analiz edilmiştir. Kanat açıklık oranı (en/boy oranı) değeri 1,1 seçilmiştir. 7,2x105 Reynolds sayısında, 0° ile 46° arasındaki hücum açılarında kanat üzerinde analizler yapılmıştır. Sonuçlar incelendiğinde, 0,05a0,16w (0,05a ve 0,16w) kanadın sürtünme katsayısı (CD)  düz kanatla kıyaslandığında %12,57 daha düşüktür. İrtifa kaybı(Stall) sonrası hücum açıları için, 0,05a0,16w kanadı ile düz kanat ortalama kaldırma katsayısı (CL) ve CD değeri açısından kıyaslandığında 0,5a0,16w kanadı sırasıyla %7,86 ve %9,79 daha yüksek değerlere sahiptir. Stall sonrasında aerodinamik verim(CL /CD), 0,05a0,16w kanadının, düz kanattan %3,81 daha yüksek olduğu görülmektedir. 

The Numeric Analysis of Tubercle Effect on Modified NACA-0015 Airfoil

In this study, the aerodynamic characteristics of the humpback whale were investigated by applying the NACA-0015 model to the wing of the airfoil. Inspired by the maneuverability during the chase and capture of the humpback whale, NACA-0015 has placed the tubercles the same wavelength (w) and different amplitudes (a) in the leading edge region of the wing. The three different modified wings and the baseline obtained were compared in terms of aerodynamic performance. The wavelength of the modified wings used in this study is 16% of the chord length and the values of the amplitudes were determined as 0,05%, 0,1% and 0,15%, respectively, of the chord length. All wing structures were designed in Solidworks CAD program. These solid models were numerically analyzed with the k-epsilon realizable turbulence model in the average Navier-Stokes analysis method in ANSYS Fluent software. Wing openness ratio (aspect ratio) value 1,1 was selected. On the 7,2x105 Reynolds number, analyzes were made on the wing at the attack angle between 0 ° and 46 °. After the examination of the results, it’s found that the baseline has a higher lift coefficient (CL) than the modified wing before the stall. The coefficient of friction (CD) of the 0,05a0,16w (0,05a ve 0,16w) is 12,57% lower than that of the baseline. For post-stall angle of attacks, when 0,05a0,16w wing is compared to baseline average CL and CD value, the wing of 0,5a0,16w has 7,86% and 9,79% higher values respectively. After stall, It has seen that the aerodynamic efficiency (CL / CD) of 0,05a0,16w is %3,81 higher than the baseline.  

___

  • [1] Yao J., Yuan W., Wang J., Xie J., Zhou H., Peng M. and Sun Y., “Numerical simulation of aerodynamics performance for two dimensional wind turbine airfoils”, Procedia Engineering, 31: 80-86, (2011).
  • [2] Lianbing L., Yuanwei M. and Lina L., “Numerical simulation on aerodynamics performance of wind turbine airfoil’’, World Automation Congress (WAC), Puerto Vallarta/ Mexico, 1-4, (2012).
  • [3] Villalpanda F., M. Reggio, and A. Ilinca, “Assessment of turbulence model for flow simulation around a wind turbine airfoil”, Modeling and Simulation in Engineering, 2011: 1-8, (2011).
  • [4] Duvigneau R. and Visonneau M., “Simulation and optimization of stall control for an airfoil with a synthetic jet”, Aerospace Science and Technology, 10: 279-287, (2006).
  • [5] Siauw W.L., Bonnet J-P., Tensi J., Cordier L., B.R. Noack and Cattafesta L., “ Transient Dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators”, International Journal of Heat and Fluid Flow, 31: 450-459, (2010).
  • [6] Srinivasan G.R., Ekaterinaris J.A. and McCroskey W. J., “ Evaluation of turbulence model for unsteady flows of an oscillating airfoil”, Computers & Fluids, 24: 833-861, (1995).
  • [7] Ravi H.C., Madhukeshwara N. and Kumarappa S., “ Numerical investigation of flow transition for NACA-4412 airfoil using computatıonal fluid dynamics”, International Journal of Innovative Research in Science Engineering and Technology, 2: 2778-2785, (2013).
  • [8] Deepa M.S., Nithya S.N. and Karthik P., “Numerical simulation of turbulent flow past Stationary NACA 0012 airfoil using FLUENT”, International Journal of Engineering Research & Technology, 2: 1209-1212, (2013).
  • [9] Şahin İ., ve Acır A., “Numerical and Experimental Investigations of Lift and Drag Performances of NACA-0015 Wind Turbine Airfoil’’, International Journal of Materials Mechanics and Manufacturing, 3(1): 22-25, (2015).
  • [10] Khabisi H.M., “The study of streamlines and pressure distribution around a NACA 0015 airfoil’’, The First Conference on the Development of Science and Chemical Industry, Kerman, 1-7, (2017).
  • [11] Saad M.M.M., Bin Mohd S., Zulkafli M.F. and Shibani W.M.E., “numerical analysis for comparison of aerodynamic characteristics of six airfoils’’, AIP Conf. Proc., 1831(1): 20004, (2017).
  • [12] https://tr.wikipedia.org/wiki/Kambur_balina
  • [13]http://consciousbreathadventures.com/humpack-whales-distinctive-features/
  • [14] Fish, F.E. and Battle, J.M., “Hydrodynamics design of humpback whale flipper,” journal of morphology’’, Journal of Morfology, 225: 51-60, (1995).
  • [15] Van Nierop E.A., Alben S., and Brenner M.P., “How bumps on whale flippers delay stall: an aerodynamic model”, Pyhsical Review Letters, 100: 1-4, (2008).
  • [16] Fish F.E., Howle L.E., and Murray M.M., “Hydrodynamic flow control in marine mammals”, Integrative and Comparative Biology, 48: 788-800, (2008).
  • [17] Fish F.E., Weber P.W., Murray M.M. and Howle L.E., “The tubercles on humpback whales’ flippers: application of bio-ınspired technology”, Integrative and Comparative Biology, 51(1): 203-213, (2011).
  • [18] Custodio D. and Henoch C.W., “Aerodynamic characteristics of finite span wings with leading-edge protuberances”, AIAA Journal, 503: 1878-1893, (2015).
  • [19] Miklosovic D.S., Howle L.E. and Fish F.E., “Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers”, Physics of Fluids ,16: 39-42, (2004).
  • [20] Fernandes I., Sapkota Y. Mammen T., Rasheed A., Rebello C.L. and Kim Y.H., “Theoretical and experimental investigation of the leading edge tubercles on the wing performance: Aviation Technology”, Aviation Technology Integration and Operations Conference, Los Angeles, USA, 1-41, (2013).
  • [21] Johari H., Henoch C., Custodio D. and Levshin A., “Effects of leading-edge proturbences on airfoil performance’’, AIAA Journal, 45: 2634-2632, (2007).
  • [22] Hasan M.J., Islam M.T., Hassan M.M., “A comparative analysis between NACA 4412 airfoil and it’s modified form with tubercles", 7th BSME International Conference On Thermal Engineering, 20041-20054, Bangladesh, (2017).
  • [23] Pedro H.T.C. and Kobayashi M.H., “Numerical study of stall delay on humpback whale flippers”, 46th AIAA Aerospace Sciences Meeting and Exhibit, Virigina, 584-592, (2008).
  • [24] Rostamzadeh N., Kelso R.M. and Dally B., “A numerical investigation into the effects of Reynolds number on the flow mechanism induced by a tubercled leading edge”, Theoretical and Computational Fluid Dynamics, 31(1): 1-32, (2017).
  • [25] Cai C., Zuo Z., Morimoto M., Maeda T. Kamada, Y. and Liu S., “Two-step stall characteristic of an airfoil with a single leading-edge protuberance”, AIAA Journal, 56(1): 1-14, (2017).
  • [26] http://airfoiltools.com/airfoil/details?airfoil=naca0015-il
  • [27] Ariff M., Salim S.M. and Chea S.C., “Wall Y + approach for dealing with turbulent flow over a surface mounted cube: part 1 – low Reynolds number”, Seventh International Conference on CFD in the Minerals and Process Industries, Australia, 1–6, (2009).
  • [28] https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/flu_ug/flu_ug_mesh_quality.html
  • [29] ANSYS FLUENT 12.0 Theory Gude - 4.4.3 Realzable – Model, http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node60.htm
  • [30] Izoguchi M.M., Ajikawa Y.K. and Toh H.I., “Aerodynamic characteristics of low-aspect-ratio wings with various aspect ratios in low Reynolds number flows”, Trans. Japan Soc. Aero. Space Sci., 59(2): 56–63, (2016).
  • [31] Wang Y.Y., Hu W.R. and Zhang S.D., “Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing”, Journal of Hydrodynamics, 26(6): 912-920, (2015).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Savonius Rüzgâr Türbini Çevresindeki Hava Akışının Hesaplanabilir Akışkanlar Dinamiği Yöntemi İle Analizi

Mustafa GOKTAS, FARUK KILIÇ

Kayın (Fagus orientalis Lipsky) Odununun Yüzey Özelliklerine Nano-Grafen Katkılı Su Bazlı Verniklerin Etkisi

Hüseyin PELİT, Korkmaz MUSTAFA

MOCVD ile büyütülen InGaN/GaN güneş hücresi yapısının a-,c- örgü parametreleri, zorlamagerilme analizi ve termal genleşme katsayısı

A. Kürşat Bilgili, Ömer Akpınar, Gürkan Kurtuluş, M. Kemal Öztürk, Süleyman ÖZÇELİK, Ekmel Özbay

Geri Dönüşlü DC-DC Dönüştürücünün Genelleştirilmiş Düğüm Denklemleri ile Analizi

Hakan KÖSENİ, Ali Bekir YILDIZ

Crystal Size and Stress Account in Reciprocal Space Map

İlknur KARS DURUKAN, M. Kemal ÖZTÜRK, Süleyman ÖZÇELİK, Ekmel ÖZBAY

Özel Tip Bir Yarı Römork için Bağımsız Süspansiyon Sistemi Tasarımı: Kavramsal Tasarım Çalışmaları

Mehmet Murat TOPAÇ, Berk ÖZMEN, Uğur DERYAL, Orhun SELBES

Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi

MURAT ALTIN, Hüseyin Serdar YÜCESU

Düşey Yük Etkisi Altındaki Kazık Gruplarının Bozkurt Optimizasyon Algoritması ile Optimizasyonu

RASİM TEMÜR, Cihan ÖSER

Experimental Study of Thermal Performance and Pressure Differences of Different Working Fluids in Two-phase Closed Thermosyphons Using Solar Energy

Engin ÖZBAŞ

A Numerical Study on Determination of the Optimal Hole Diameter and Pitch Value for the Unglazed Transpired Solar Collectors

Ataollah KHANLARI, İlker AY