Kemik Delme İşlemlerinde Farklı Kesme Koşullarının ve Kesme Parametrelerinin Kesme Sıcaklığı Üzerindeki Etkisinin Araştırılması

Bu çalışmada, kemik delme işleminde farklı takım geometrisinin, takım malzemesinin, farklı kesme koşullarının ve parametrelerinin kesme sıcaklığı üzerindeki etkisi deneysel olarak araştırılmıştır. Delme işlemi sırasında nekroza neden olan veya olabilecek olan tüm unsurlar belirlenmeye çalışılmıştır. Deneylerde 12 saat önce canlı olan sığırın femur kemikleri kullanılmış ve delme bölgesine çok yakın noktalarda kesme sıcaklığı deneysel olarak tespit edilmiştir. Elde edilen sonuçlara göre, kesme esnasında kullanılan devir sayısı kesme sıcaklığını en çok etkileyen kesme parametresidir. İlerlemenin artması kesme sıcaklığında düşüşe neden olmaktadır. Gagalama tekniği ile delik delinmesi, kesme bölgesindeki sıcaklığın önemli ölçüde azalmasına katkıda bulunmaktadır. Gagalama tekniği kesme sıcaklığını önemli ölçüde düşürmektedir. Düşük debide uygulanan salin sıvısı matkap kanallarının tıkanmasına sebep olurken, 0,04 l/dk debide uygulanan salin sıvısı kesme sıcaklığını düşürmektedir. AISI-316L malzemeden üretilmiş matkap uçlarında daha düşük kesme sıcaklıkları gözlemlenmiştir. Aynı zamanda matkap geometrisinin etkilerine yer verilmiştir.

Investigation of The Effect of Different Cutting Conditions and Cutting Parameters on Cutting Temperature in Bone Drilling

In this study, the effect of different tool geometry, tool material, different cutting conditions and parameters on the cutting temperature was investigated experimentally. All factors that may cause necrosis during the drilling process were tried to be determined. Femur bones of the cattle that were alive 12 hours ago were used in the experiments and the cutting temperature was determined experimentally at the points very close to the puncture site. According to the results obtained, speed is the parameter that most affects the cutting temperature. Increasing feed rate causes a decrease in cutting temperature. Drilling holes with pecking technique contributes to a significant reduction in temperature in the cutting zone. The pecking technique significantly reduces the cutting temperature. Saline fluid applied at low flow causes the drill flutes to clog while saline fluid applied at the flow rate of 0.04 l/min lowers cutting temperature. Lower cutting temperatures were observed in drill bits made of AISI-316L material. Also, the effects of drill geometry are included.

___

  • [1] Kondo S., Okada Y., Iseki H., Hori T., Takakura K., Kobayashi A. and Nagata H., “Thermological Study of Drilling Bone Tissue With a High-Speed Drill”, Neurosurgery, 46(5): 1162-1168, (2000).
  • [2] Augustin G., Davilla S., Mihoci K., Udiljak T., Vedrina D.S. and Antabak A., “Thermal Osteonecrosis and Bone Drilling Parameters Revisited”, Archives of Orthopaedic and Trauma Surgery, 128(1): 71-77, (2007).
  • [3] Augustin G., Zigman T., Davila S., Udilljak T., Staroveski T., Brezak D. and Babic S., “Cortical Bone Drilling and Thermal Osteonecrosis”, Clinical Biomechanics, 27(4): 313-325, (2012).
  • [4] Dolan E.B., Haugh M.G., Tallon D., Casey C. and Mcnamara L.M., “Heat-Shock-Induced Cellular Responses to Temperature Elevations Occurring During Orthopaedic Cutting”, Journal of The Royal Society Interface, 9: 3503-3513, (2012).
  • [5] Tai B.L., Palmisano A.C., Belmont B., Irwin T.A., Holmes J. and Shih A.J., “Numerical Evaluation of Sequential Bone Drilling Strategies Based on Thermal Damage”, Medical Engineering and Physics, 37(9): 855-861, (2015).
  • [6] Moritz A.R. and Henriques F.C., “Studies of Thermal İnjury II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns”, Am. Jo. Pathol., 23: 695 720, (1947).
  • [7] Thompson H.C., “Effect of Drilling İnto Bone”, Journal of Oral Surgery, 16(1): 22–30, (1958).
  • [8] Pallan F.G., “Histological Changes in Bone After Insertdon of Skeletal Fixation Pins”, Journal of Oral Surgery, Anesth. Hosp. Dent Serv, 18: 400–408, (1960).
  • [9] Matthews L.S., Green C.A. and Goldstein S.A., “The Thermal Effects of Skeletal Fixation-Pin Insertion in Bone”, The Journal of Bone and Joint Surgery, 66: 1077-1083, (1984).
  • [10] Abouzgia M.B. and James D.F., “Temperature Rise During Drilling Through Bone”, International Journal of Oral and Maxillofacial Implants 12(3): 342–353, (1997).
  • [11] Hillery M.T. and Shuaib I., “Temperature Effects in the Drilling Of Human and Bovine Bone”, Journal of Materials Processing Technology, 92-93: 302-308, (1999).
  • [12] Toews A.R., Bailey J.V., Townsend H.G. and Barber S.M., “Effect of Feed Rate and Drill Speed on Temperatures in Equine Cortical Bone”, American Journal of Veterinary Research, 60(8): 942-944, (1999).
  • [13] Hutchinson D.T., Bachus K.N. and Higgenbotham T., “External Fixation of the Distal Radius: To Predrill or not to Predrill”, The Journal of Hand Surgery, 25(6): 1064-1068, (2000).
  • [14] Ashford R.U., Pande K.C. and Dey A., “Current Practice Regarding Re-Use of Trauma İnstrumentation: Results of a Postal Questionnaire Survey”, Injury, 32(1): 37-40, (2001).
  • [15] Garcia O.G., Mombiela F.L., Fuente C.D., Jimenez C., Aranguez M. G., Escribano D. G. and Martin J. V., “The Influence of the Size and Condition of the Reamers on Bone Temperature During Intramedullary Reaming”, Journal of Bone and Joint Surgery, 86, 994-999, (2004).
  • [16] Kalidindi V., “Optimization of Drill Design and Coolant Systems During Dental Implant Surgery”, Masters Thesis, University of Kentucky, Graduate School, Kentucky, (2004).
  • [17] Alam K., Muhammad R., Shamsuzzoha A., Alyahmadi A. and Ahmed N., “Quantitative Analysis of Force And Torque in Bone Drilling”, The Journal of Engineering Research, 14: 39-48, (2016).
  • [18] Lee J., Rabin Y. and Ozdoganlar O.B., “A New Thermal Model for Bone Drilling With Applications to Orthopaedic Surgery”, Medical Engineering and Physics, 33: 1234-1244, (2011).
  • [19] Aliakhbar M.F. and Yusoff A.R., “Drilling of Bone: Effect of Drill Bit Geometries on Thermal Osteonecrosis Risk Regions”, Journal of Engineering in Medicine, 095441191881911, (2018).
  • [20] Fuchsberger A., “Damaging Temperature During the Machining of Bone”, Unfallchirurgie, 14: 173-183, (1988).
  • [21] Bechtol C.O., Ferguson A.B. and Laing P.G., “Metals and Engineering İn Bone and Joint Surgery”, 1st Ed., Williams and Wilkins, Baltimore, (1959).
  • [22] Jacob C.H., Berry J.T., Pope M.H. and Hoaglund F. T., “A Study of the Bone Machining Process-Drilling”, Journal of Biomechanics, 9(5): 343-349, (1976).
  • [23] Farnworth G.H. and Burton J.A., “Optimization of Drill Geometry for Orthopaedic Surgery”, 14th International Machine Tool Design and Research Conference, Manchester, England, 12-14, (1974).
  • [24] Wang Y., Cao M., Zhao X., Zhu G., Mcclean C., Zhao Y. and Fan Y., “Experimental Investigations and Finite Element Simulation of Cutting Heat in Vibrational and Conventional Drilling of Cortical Bone”, Medical Engineering and Physics, 36(11): 1408-1415, (2014).
  • [25] Nam O., Yu W., Choi M.Y. and Kyung H. M., “Monitoring of Bone Temperature During Osseous Preparation for Orthodontic Micro-Screw Implants: Effect of Motor Speed and Ressure”, Key Engineering Materials, 321-323: 1044-1047, (2006).
  • [26] Sui J., Sugita N. and Mitsuishi M., “Thermal Modeling of Temperature Rise for Bone Drilling With Experimental Validation”, Journal of Manufacturing Science and Engineering, 137(6): 061008, (2015).
  • [27] Abouzgia M.B. and James D.F., “Measurements of Shaft Speed While Drilling Through Bone”, Journal of Oral and Maxillofacial Surgery, 53(11): 1308-1315, (1995).
  • [28] Costich E.R., Youngblood P.J. and Walden J.M., “A Study of the Effects of Hıgh-Speed Rotary Instruments on Bone Repair in Dogs”, Oral Surgery Oral Medicine and Oral Pathology, 17(5): 563-571, (1964).
  • [29] Mellinger J.C., Ozdoganlar B.O., Devor R.E. and Kapoor S.G., “Modeling Chip-Evacuation Forces and Prediction of Chip-Clogging in Drilling”, Journal of Manufacturing Science and Engineering, 124(3): 605-614, (2002).
  • [30] Shakouri E., Hassanalideh H.H. and Gholampour S., “Experimental Investigation of Temperature Rise in Bone Drilling with Cooling: A Comparison Between Modes of Without Cooling İnternal Gas Cooling and External Liquid Cooling”, Journal of Engineering Medicine, 232(1): 45-53, (2017).
  • [31] Staroveski T., Brezak D. and Udiljak T., “Drill Wear Monitoring in Cortical Bone Drilling”, Medical Engineering and Physics, 37(6): 560-566, (2015).
  • [32] Soylu A., “Bir Delme Dinamometresi Tasarım ve İmalati ile HSS–1040 Malzeme Çiftinde İlerleme Kuvveti ve Döndürme Momentinin Analizi”, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, (2007).
  • [33] Wiggins K.L. and Malkin S., “Drilling of Bone”, Journal of Biomechanics, 9: 553-559, (1976).
  • [34] Toparli M., Sen F., Culha O. and Celik E., “Thermal Stress Analysis of HVOF Sprayed WC Co/NiAl Multilayer Coatings on Stainless Steel Substrate Using Finite Element Methods”, Journal of Materials Processing Technology, 190: 26-32, (2007).
  • [35] Umbrello D., Saoubi R.M. and Outeito J.C., “The Influence of Johnson–Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel”, International Journal of Machine Tools and Manufacture, 47: 462-470, (2007).
  • [36] Alam K., Mitrofanov A.V. and Silberschmidt V.V., “Experimental Investigations of Forces and Torque in Conventional and Ultrasonically-Assisted Drilling of Cortical Bone”, Medical Engineering and Physics, 33: 234-239, (2011).
  • [37] Gupta V. and Pandey P.M., “An in Vitro Study of Cutting Force and Torque During Rotary Ultrasonic Bone Drilling”, Proceedings of The Institution of Mechanical Enginners Part B, Journal of Engineering Manufacture, 232(9): 1549-1560, (2016).
  • [38] Alam K., “Exploring Thermal Anisotropy of Cortical Bone Using Temperature Measurements in Drilling”, Bio-Medical Materials and Engineering, 27: 39-48, (2016).
  • [39] Wang W., Shi Y., Yang N. and Yuan X., “Experimental Analysis of Drilling Process In Cortical Bone”, Medical Engineering and Physics, 36, 261-266, (2014).