h-BN/DCM ve SiO2/DCM Nanoakışkanlarının Başınç Düşümlerinin İncelenmesi

Sunulan çalışmada, sayısal yöntemler kullanılarak h-BN/DCM ve SiO2/DCM nanoakışkanlarının akış karakteristikleri ve basınç düşüleri, farklı boru çaplarında incelenmiştir. Kullanılan boru çapları 0,0127 m, 0,0254 m, 0,0381 m, 0,0508 m ve 0,0762 m’dir. Nanoakışkanların hazırlanmasında dikolorometan (DCM) baz akışkan olarak kullanılmış, ve heksagonal bor nitrür ve silika, baz akışkana %1 oranında karıştırılmıştır. Her ne kadar nanoakışkanlar günümüzde birçok termal ve termodinamik analize konu olmuş olsa da, baz akışkana kıyasla viskozitelerindeki artışın sebep olduğu enerji kayıpları ile ilgili araştırmalar yetersiz kalmıştır. Bu çalışma sonucunda da sabit boru çapında basınç düşümünün en yüksek 0,00056 kg/ms ile en yüksek viskoziteye sahip SiO2/DCM nanoakışkanında, en düşük basınç düşümünün de en düşük viskoziteye sahip DCM’de olduğu görülmüştür.

The Investigation of Flow Characteristics and Pressure Drops of h-BN/DCM and SiO2 Nanofluids

The present study is about the investigation of the flow characteristics and pressure heads of h-BN & DCM and SiO2 & DCM nanofluids at various pipe diameters by using numerical methods. The pipe diameters are 0.0127 m, 0.0254 m, 0.0381 m, 0.0508 m, 0.0762 m. Dichloromethane (DCM) was used as base fluid in nanofluid preparation. Hexagonal boron nitride and silica were mixed into the base fluid by 1% when obtaining the nanofluids. Although nanofluids have been located in the center of many thermal and thermodynamic analyses, the scientific research about the energy losses caused by their increased viscosity compared to the base fluids have remained insufficient. This study investigates the pressure losses of several nanofluids and their behaviors in a pipe. It was found out that the highest increment in pressure drop was in SiO2-DCM which has the largest viscosity of 0.00056 kg/ms and the smallest increment in pressure drop is in DCM which has the lowest viscosity with 0.000413 kg/ms for a constant pipe diameter.

___

  • [1] Tsai. C. Y., Chien, H. T., Ding, P. P., Chan, B., Luh, T. Y. and Chen, P. H., “Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance”, Materials Letters, vol. 58, pp. 1461-1465, (2004).
  • [2] Kang, S-W., Wei, W-C., Tsai, S-H. and Yang, S-Y., “Experimental investigation of silver nano-fluid on heat pipe thermal performance”, Applied Thermal Engineering, vol. 26, pp. 2377-2382, (2006).
  • [3] Lin, Y-H., Kang, S-W. and Chen, H-L., “Effect of silver nano-fluid on pulsating heat pipe thermal performance”, Applied Thermal Engineering, vol. 28, pp. 1312-1317, (2008).
  • [4] Kang, S-W., Wei, W-C., Tsai, S-H. and Yang, S-Y., “Experimental investigation of silver nano-fluid on heat pipe thermal performance”, Applied Thermal Engineering, vol. 26, pp. 2377-2382, (2009).
  • [5] Sadeghinezhad, E., Mehrali, M., Rosen, M. A., Akhiani, A. R., Latibari, S. T., Mehrali, M. and Metselaar, H. S. C., “Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance”, Applied Thermal Engineering, vol. 100, pp. 775-787, (2016).
  • [6] Gupta, N. K., Tiwari, A. K. and Ghosh, S. K., “Experimental study of thermal performance of nanofluid-filled and nanoparticles-coated mesh wick heat pipes”, Journal of Heat Transfer-ASME, vol. 140, pp. 102403(1-7), (2018).
  • [7] Sözen A., Gürü, M., Khanlari, A. and Çiftçi, E., “Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid”, Applied Thermal Engineering, vol. 160, 114001, (2019).
  • [8] Khanlari, A., Sözen, A., Variyenli, H. İ. and Gürü, M., “Comparison between heat transfer characteristics of TiO2/deionized water and kaolin/deionized water nanofluids in the plate heat exchanger”, Heat Transfer Research, vol. 50, No. 5, pp. 435-450, (2018).
  • [9] Sözen, A.,Khanları, A. and Çiftçi, E., “Heat transfer enhancement of plate heat exchanger utilizing kaolin-including working fluid”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 233, No. 5, pp. 626-634, (2019).
  • [10] Özdemir, M. B. and Ergun, M. E., “Experimental and numerical investigations of thermal performance of Al2O3/water nanofluid for a combi boiler with double heat exchangers”, International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29, pp. 1300-1321, (2019).
  • [11] Variyenli, H. I., “Experimental and numerical investigation of heat transfer enhancement in a plate heat exchanger using a fly ash nanofluid”, Heat Transfer Research, vol. 50, pp. 1477-1494, (2019).
  • [12] Yousefi, T., Veysi, F., Shojaeizadeh, E. and Zinadini, S., "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors", Renewable Energy, vol. 39, pp. 293-298, (2012).
  • [13] Kiliç, F., Menlik, T. and Sözen, A., “Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector”, Solar Energy, vol. 164, pp. 101-108, (2018).
  • [14] Kaya, M., Gurel, A. E., Agbulut, U., Ceylan, I., Celik, S., Ergun, A. and Acar, B., “Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe”, Energy Conversion and Management, vol. 199, 111936, (2019).
  • [15] Dehaj, M. S. and Mohiabadi, M. Z., “Experimental study of water-based CuO nanofluid flow in heat pipe solar collector”, Journal of Thermal Analysis and Calorimetry, vol. 37, pp. 2061-2072, (2019).
  • [16] Sudarmadji, S. and Bambang SAP, S., “Performance Evaluation Criterion of Nanofluid”, Microfluidics and Nanofluidics, Springer, 272-292, (2017).
  • [17] Mewis, J. and Wagner, N.J., “Colloidal Suspension Rheology”, Cambridge, U.K. Cambridge University Press, (2012).
  • [18] Sözen, A., Gürü, M., Menlik, T., Karakaya, U. and Çiftçi, E., “Experimental comparison of triton x-100 and sodium dodecyl benzene sulfonate (SDBS) surfactants on thermal performance of TiO2- deionized water nanofluid in a thermosyphon”, Experimental Heat Transfer, vol. 31, pp. 450-469, (2018).
  • [19] Heris, S.Z., Ahmadi, F. and Mahian, O., “Pressure drop and performance characteristics of water-based Al2O3 and CuO Nanofluids in a triangular duct”, J. Dispers. Sci. Technol., 34, 1368–1375, (2013).