Elektrik Kabloları için Halojensiz Alev Geciktirici Kılıf Malzemesi Üretiminde Kullanılan Kompozit Malzemede Çinko Borat, Alüminyum Hidroksit ve Magnezyum Hidroksit Kompozisyonunun Optimizasyonu

Bu çalışmada enerji dağıtım hatlarında kullanılan kılıf malzemelerinin katkılandırılması ile alev geciktirici kılıf malzemesinin üremi üzerine çalışılmıştır. Şimdiye kadar yapılan çalışmalar incelendiğinde Halogen Free Flame Retardant (HFFR) olarak en çok kullanılan malzemeler Alüminyum Hidroksit Al (OH)3 (ATH), Magnezyum Hidroksit Mg (OH)2 (MDH) olarak karşımıza çıkmıştır. Bu malzemelere ek olarak Çinko Borat malzemesinin yanmazlık özelliğinden yararlanılarak, 3 alev geciktirici malzeme ile çalışma yapılmıştır. Çalışmaların çekme dayanımı ve yüzde uzama ve LOI (Limiting Oxygen Index) sonuçlarının optimum sonuçları ve en uygun kombinasyonları için deneysel tasarım yöntemi kullanıllanılmıştır. Deneysel tasarım yönteminin için ECHIP-7 programına tüm girdi parametreleri (çekme dayanımı ve yüzde uzama ve LOI) girilmiştir. Polimer matris olarak Lineer Düşük Yoğunluklu Polietilen (LLDPE) ve Etilen Vinil Asetat (EVA) kullanılmıştır. HFFR kılıf malzemesi için optimum bileşimin ağırlıkça% 40 Polimer, % 30 ATH ve % 30 MDH'ye sahip olması gerektiği sonucuna varılmıştır. Optimum parametre kriterleri göz önüne alındığında, kompozisyonda ZB kullanımına gerek olmadığı da görülmüştür. Optimize edilen reçete kablo kılıflamasında kullanılarak kabloya elektriksel, mekanik ve yanma testleri uygulanmıştır.

Optimization of Zinc Borate, Aluminum Hydroxide and Magnesium Hydroxide Composition in Composite Material Used in the Production of Halogen-Free Flame Retardant Sheath Material for Electrical Cables

This study focused on the production of the flame retardant sheath material used in electric distribution lines, that is produced by doping. When reviewing the studies carried out so far, Aluminium Hydroxide Al(OH)3 (ATH), Magnesium Hydroxide Mg(OH)2 (MDH) were found to be used as Halogen-Free Flame Retardant (HFFR) materials. In addition to these two compounds, the study was carried out with three flame retardant materials by using the flame retardant property of the Zinc Borate compound. In the study, the design of the experimental method was used to optimize the maximum tensile strength, elongation and Limiting Oxygen Index (LOI) of composites and define the most suitable composition. Linear Low-Density Polyethylene (LLDPE) and Ethylene Vinyl Acetate (EVA) were used as polymer matrices. The weight percent of Al(OH)3, Mg(OH)2, ZnB2O4 compounds were taken to be input variables, and the maximum tensile strength, elongation, and Limiting Oxygen Index values of the composites to be output variables for using in ECHIP-7 software that is a design of experiment program. At the end of the study, 40 %w of polymer, 30%w of ATH, and 30%w MDH was selected to be an optimum composition for the HFFR sheath material. Given the optimum parameters criteria, it was also seen that there is no need for Zinc Borate usage in the optimum composition. The optimum composition was used as cable sheath material, and electrical, mechanical, and burning tests were applied to the produced new cable. 

___

  • [1] Laoutıd F. , Bonnaud L., Alexandre M., Lopez- Cuesta, J.M., Duboıs, P., “New prospects in flame retardant polymermaterials: from fundamentals to nanocomposites”, Mater. Sci. Eng. R, 63: 100-25 (2009).
  • [2] Yıldırım S. İletkenlerin İzolasyonunda Kullanılan Halojen İçermeyen, Alev Geciktiricili Polimer Matrisli Kompozit Malzeme Üretimi, Erciyes Üniversitesi, (2020).
  • [3] MUREIMK, R.J. , ‘’Flame Retardants’’, Industrial Minerals, 364: 45-49, (1998).
  • [4] Wang L. , Wang G., Jiang P., Research on the related properties of EVM/AL(OH)3/SiO2 composites Applied for halogen free flame retardant cable insulation and jacket, Journal of Applied Polymer Science, 120:368-378,(2011).
  • [5] G.Wang, P.Jiang and Z.Zhu; Polymer Composites; 23: 691,(2002).
  • [6] J.T.Yeh, M. J.Yang and S.H.Hsieh; Polym Degrd Stb; 61: 465,(1998).
  • [7] Szep A, A. Szabo, N Toth , P Anna, G Marosi; Polym Degrd Stb;91: 593,(2006).
  • [8] G. Beyer; Fire Mater; 25: 193,(2006).
  • [9] Ning Y and Guo SY. Flame-retardant and smokesuppressant properties of zinc borate and aluminum trihydrate filled rigid PVC. J Appl Polym Sci; 77(14): 3119–3127, (2000).
  • [10] Pi H, Guo SY and Ning Y. Mechanochemical improvement of the flame-retardant and mechanical properties of zinc borate and zinc borate—aluminum trihydrate-filled poly(vinyl chloride). J Appl Polym Sci; 89(3): 753–762,( 2003).
  • [11] Bourbigot S, Le Bras M, Leeuwendal R, et al. Recent advances in the use of zinc borates in flame retardancy of EVA. Polym Degrad Stabil; 64(3): 419–425, (1999).
  • [12] Carpentier F, Bourbigot S, Le Bras M, et al. Rheological investigations in fire retardancy: application to ethylenevinyl - acetate copolymer-magnesium hydroxide/zinc borate formulations. Polym Int; 49(10): 1216–1221, (2000).
  • [13] Genovese A and Shanks RA. Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate. Polym Degrad Stabil; 92(1): 2–13, (2007).
  • [14] Carpentier F, Bourbigot S, Le Bras M, et al. Charring of fire retarded ethylene vinyl acetate copolymer—magnesium hydroxide/zinc borate formulations. Polym Degrad Stabil; 69(1): 83–92, (2000).
  • [15] Liang JZ and Zhang YJ. A study of the flame-retardant properties of polypropylene/Al(OH)(3)/Mg(OH)(2) composites. Polym Int; 59(4): 539–542, (2010).
  • [16] Chen XL, Yu J, Qin J, et al. Combustion behaviour and synergistic effect of zinc borate and microencapsulated red phosphorus with magnesium hydroxide in flame-retarded. [17] G. Beyer; Fire Mater; 25: 193,(2006).
  • [18] HANCOCK, M. , Filled Thermoplastic. In: Rothon, R. , (Eds.), Particulate-Filled Polymer Composites, Longman Scientific And Technical, New York, USA, 279–316,(2003).
  • [19] Rothon RN ,Hornsby PR. Polym Degrad Stab; 54 :383–5, (1996).
  • [20] Jancar J,Kucera J, Vesely P. J Mater Sci ;26 :4883–7, (1991).
  • [21] Wang J,Tung JF , Fuad MYA,Hornsby PR. J Appl Polym Sci; 60 :1425–3, (1996).
  • [22] Tai CM , Li RKY. J Appl Polym Sci 2001; 80 : 2718–28.
  • [23] Gupta V. , Jain D. Optimization of Halogen Free Flame Retardant Wire and Cable Compounds, Pluss Polymer, India, (2016).
  • [24] Yılmaz, M.C. , Ezdeşir, A., Ulutan, S., Tüzüm-Demir, A. P. 2013. Production of a polymeric composite material filled with halogen-free flame retardant. Polymers and Polymer Composites, 21:3, 133-138, (2013).
  • [25] İbibikcan, E., Kaynak, C. Usability of three boron compounds for enhancement of flame retardancy in polyethylene-based cable insulation materials. Journal of fire sciences, 32(2): 99-120, (2014).
  • [26] Sener, A.A. , & Demirhan, E. The investigation of using magnesium hydroxide as a flame retardant in the cable insulation material by cross-linked polyethylene. Materials & Design, 29(7): 1376-1379, (2008).
  • [27] Shen KK and Olsen E. 2004. Borates as fire retardants in halogen-free polymers. In: Fire and polymers IV—ACS symposium series 922, Philadelphia,(2004).
  • [28] Bourbigot, S. , Le Bras, M., Leeuwendal, R., Shen, K.K., Schubert, D. Recent advances in the use of zinc borates in flame retardancy of EVA. Polymer degradation and stability, 64(3), 419-425, (1999).
  • [29] Yıldırım S. , Demirel B., Effecct of extruder studies on combustion in the production of halogen free flame retardant polymer matrix composite production, 4.International Conference on Material Science and Technology in Kızılcahamam, Ankara, (2019).
  • [30] Könnicke D, Kühn A, Mahrholz T, Sinapius M. “Polymer Nanocomposites Based on Epoxy Resin and ATH as a New Flame Retardant for CFRP: Preparation and Thermal Characterisation”. Journal of Materials Science, 46(21): 7046-7055, (2011).
  • [31] TS EN 50395, Electrical Test Methods For Low Voltage Energy Cables, (2007).
  • [32] TS EN 50525-1, Low Voltage Energy Cables Of Rated Voltages Up To And İncluding 450/750 V (U0/U) - Part 1: General Requirements, (2004).
  • [33] TS EN 50396, Non Electrical Test Methods For Low Voltage Energy Cables, (2007).
  • [34] TS EN 60811-201, Electric And Optical Fibre Cables -Test Methods For Non-Metallic Materials -Part 201: General Tests -Measurement Of İnsulation Thickness (2013).
  • [35] TS EN 60811-401, Electric And Optical Fibre Cables - Test Methods For Non-Metallic Materials - Part 401: Miscellaneous Tests - Thermal Ageing Methods - Ageing in An Air Oven, (2012).
  • [36] TS En 60811-508, Electric and Optical Fibre Cables - Test Methods For Non-Metallic Materials - Part 508: Mechanical Tests - Pressure Test At High Temperature For İnsulation And Sheaths, (2012).
  • [37] Ts En 60811-504, Electric And Optical Fibre Cables - Test Methods For Non-Metallic Materials - Part 504: Mechanical Tests - Bending Tests At Low Temperature For İnsulation And Sheaths, (2012).
  • [38] Ts En 50267-2-2, Common Test Methods For Cables Under Fire Conditions – Tests On Gases Evoled During Combustion Of Materials From Cables – Part2.2: Procedures – Determination Of Degree Of Aciditiy Of Gases For Materials By Measuring Ph And Conductivity, (2001).
  • [39] Ts En 60811-1-4, Insulating And Sheating Matterials Of Electric Cables Common Test Methods Part 1 General Application Section 4 Test At Low Temperature, (1996).
  • [40] Ts En 60332-1-2, Tests On Electric And Optical Fibre Cables Under Fire Conditions - Part 1-2: Test Or Vertical Flame Propagation For A Single İnsulated Wire or Cable - Procedure For 1 Kw Pre-Mixed Flame, (2008).
  • [41] Ts En 61034-2, Measurement Of Smoke Density Of Cables Burning Under Defined Conditions – Part 2: Test Procedure And Requirements.
  • [42] Giúdice C. A., Benítez J. C., Zinc borates as flame-retardant pigments in chlorine-containing coatings, Progress in Organic Coatings, 42 (1-2): 82-88, (2001).
  • [43] Toledo R. R., Santoyo V. R., Sánchez D. M., Rosales M. M., Effect of aluminum precursor on physicochemical properties of Alby hydrolysis/precipitation method, Nova Scientia, Nº 20, Vol. 10 (1), ISSN 2007 – 0705, 83 – 99, (2018).
  • [44] Vergheese M., Vishal S. K., Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity, Journal of Pharmacognosy and Phytochemistry 2018; 7(3): 1193-1200, (2018).
  • [45] Yedurkar1 S., Maurya1 C., Mahanwar P., Biosynthesis of Zinc Oxide Nanoparticles UsingIxora Coccinea Leaf Extract—A Green Approach, Open Journal of Synthesis Theory and Applications, 5: 1-14, (2016).
  • [46] Noorazlan A. M., Halimah Mohamed Kamari H. M., Siti Shafinas ZulkeflyS. S., Mohamad D. W., Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System, Journal of Nanomaterials Volume, Article ID 940917, 8 pages, (2013).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

YSA ve Bukalemun Optimizasyon Algoritmalarına Dayalı DER'lerde Tekno Ekonomik için Pratik Radyal Dağıtım Besleyicisi

Jemaa BOJOD, Bilgehan ERKAL

Ön İletimli Paralel Hibrit Aracın Bulanık Mantık Yöntemi ile Kontrolünün ve Optimizasyonunun Yapılması ve Geleneksel Kural Tabanlı Kontrol Stratejisi ile Karşılaştırılması

Tolga KOCAKULAK, Hamit SOLMAZ, Fatih ŞAHİN

Meyve Kabuğu tozları Takviyeli Ahşap Plastik Kompozit (APK) Malzemelerin Mekanik Özelliklerinin Belirlenmesi ve I-Tipi Snap-Fit Modeli için Örnek Çalışma

Fulya ERDEMİR, Murat Tolga ÖZKAN

Hava Kaynaklı Isı Pompasının Çalışma Parametrelerinin Dış Ortam Sıcaklığına Göre Değişimi

Kutbay SEZEN

Farklı Oranlarda Ca Katkısının Döküm ZK60 Mg Alaşımlarının Mikroyapı ve Mekanik Özellikler Üzerindeki Etkisinin İncelenmesi

Aykan AKBAŞ, Muzaffer ZEREN

Sivas İlindeki Elektrikli Araç Şarj İstasyonlarının Elektrik Şebekelerine Etkisinin Değerlendirilmesi

Mutlu Tarık ÇAKIR, Musa Faruk ÇAKIR

Ticari Polipropilenin Viskoelastik Karakterizasyonu ve Mekanik Histerezis Davranışı

Mustafa Mert YILMAZYURT, Serhat EYÜPREİSOĞLU, Ali Fethi OKYAR, Onur Cem NAMLI

Kalsiyum İçerikli Katkı Maddelerinin Sodyum Karbonat Kristalizasyonu Üzerine Etkileri

Derya (TUNÇEL) HOPA, Zeynep TÜRKMEN

Kuraklık Gidiş ve Büyüklüğünün Zaman ve Mekan Boyutunda Belirlenmesi: Güneydoğu Anadolu Projesi (GAP) Alanında Bir Uygulama

Ali Demir KESKİNER, Mahmut ÇETİN

Akıllı Mobil Cihazlarda YOLOv7 Modeli ile Nesne Tespiti

Batuhan KARADAĞ, Ali ARI