Dar Dikdörtgensel Bir Kanalda Türbülans Modelinin ve Nanoakışkanın Isı Transferine ve Akışkan Akışına Etkisinin Sayısal Olarak İncelenmesi

Türbülans modelinin ve nanoakışkanın, yatay dar dikdörtgen bir kanaldaki ısı transferi ve akışkan akışı üzerindeki etkisi duvarda sabit ısı akısı sınır koşulu altında sayısal olarak incelenmiştir. Sayısal çalışma ANSYS Fluent 17.0 yazılımı kullanılarak gerçekleştirilmiştir. İncelenen parametreler türbülans modeli tipi, nanoakışkan tipi, nanoakışkanın hacim fraksiyonu ve Reynolds sayısıdır. Üç farklı k- ve dört farklı k- türbülans modeli kullanılmıştır. Nanoakışkan olarak alüminyum oksit Al2O3-su ve bakır oksit CuO-su kullanılmıştır. Kullanılan nanopartiküllerin hacim fraksiyonları %0, %0,1, %0,5, %1, %2 ve %4'tür. Reynolds sayısı 3×103 'den 50×103 'e değişmektedir. Sonuçlar, düşük Reynolds düzeltmeli k-ω standart türbülans modelinin daha iyi sonuç verdiğini göstermiştir. Nanoakışkanın hem tipinin hem de hacim fraksiyonunun ısı transferini ve basınç düşüşünü etkilediği görülmüştür. Su içerisinde Al2O3 ve CuO nanoparçacıklarının kullanılması ısıl performansı artırmıştır. CuO-su nanoakışkan performans faktörünün Al2O3-su nanoakışkanınkinden daha iyi olduğu görülmüştür. Dairesel kesitli kanallar için türetilen türbülanslı tam gelişmiş akış korelasyonlarının iki boyutlu dikdörtgen kanallar için kullanılmasının yanlış sonuçlar verebileceği görülmüştür.

The effect of turbulence model and nanofluid on fluid flow and heat transfer in a narrow rectangular duct

The effect of type of turbulence model and nanofluid on the heat transfer and fluid flow in a horizontal narrow rectangular duct isnumerically studied under constant wall heat flux boundary condition. Numerical study is carried out using ANSYS Fluent 17.0software. Examined parameters are the type of turbulence model, the type of nanofluid, the volume fraction of nanoparticle innanofluid, and the Reynolds number. Three different k- and four different k- turbulence models are employed. Aluminum oxideAl2O3-water and copper oxide CuO-water are used as nanofluids. Volume fractions of nanoparticles used are 0%, 0.1%, 0.5%, 1%,2% and 4%. Reynolds number changes from 3×103to 50×103. Results showed that k-ω standard turbulence model with lowReynolds number correction gives better result. It is seen that both the type and the volume fraction of nanoparticle in nanofluidaffect heat transfer and pressure drop. Using Al2O3 and CuO nanoparticles in water increases thermal performance. It is found thatthe performance factor of CuO-water nanofluid is better than that of Al2O3-water nanofluid. It is seen that using turbulent fullydeveloped flow correlations derived for circular ducts may end up with incorrect results for the flow in two-dimensional rectangularduct.

___

  • [1] Kakac S., Shah R.K. and Aung W., “Handbook of singlephase convective heat transfer”, Wiley, USA, (1987).
  • [2] He S. and Gotts J.A., “Calculation of friction coefficients for noncircular channels”, ASME Journal of Fluids Engineering, 126: 1033–1038, (2004).
  • [3] Prasad B.N. and Saini J.S., “Effect of artificial roughness on heat transfer and friction factor in a solar air heater”, Solar Energy, 41: 555-560, (1988).
  • [4] Yuan Z.X., Tao W.Q. and Wang Q.W., “Numerical prediction for laminar forced convection heat transfer in parallel-plate channels with streamwise-periodic rod disturbances”, International Journal for Numerical Methods in Fluids, 28: 1371-1387, (1998).
  • [5] Valencia A., Martin J.S. and Gormaz R., “Numerical study of the unsteady flow and heat transfer in channels with periodically mounted square bars”, Heat and Mass Transfer, 37: 265-270, (2001).
  • [6] Chaube A., Sahoo P.K. and Solanki S.C., “Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater”, Renewable Energy, 31: 317–331, (2006).
  • [7] Bayraktar S., Bayraktar M. and Vardar N., “Numerical investigation of a water flow in a rib-roughened channel by using Reynolds stress model”, International Journal of Computational Fluid Dynamics, 22 (5): 331-339, (2008).
  • [8] Sohankar A., “Heat transfer and fluid flow through a ribbed passage in staggered arrangement”, Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 34 (5): 471-485, (2010).
  • [9] Ahmed H.E., Mohammed H.A. and Yusoff M.Z., “Heat transfer enhancement of laminar nanofluids flow in a triangular duct using vortex generator”, Superlattices and Microstructures, 52: 398-415, (2012).
  • [10] Yadav A.S. and Bhagoria J.L., “A CFD based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate”, Energy, 55: 1127–1142, (2013).
  • [11] Yadav A.S. and Bhagoria J.L., “Modeling and simulation of turbulent flows through a solar air heater having square-sectioned transverse rib roughness on the absorber plate”, The Scientific World Journal, ID 827131, (2013).
  • [12] Jhariya K., Ranjan R. and Paswan M.K., “A CFD based performance analysis of heat transfer enhancement in solar air heater provided with transverse semi-circular ribs”, International Journal of Innovative Research in Science, Engineering and Technology, 4: 4528-4537, (2015).
  • [13] Albojamal A., Hamzah H., Haghighi A. and Vafai K., “Analysis of nanofluid transport through a wavy channel”, Numerical Heat Transfer, Part A: Applications, 72: 869-890, (2017).
  • [14] Turgut O. and Arslan K., “Periodically fully developed laminar flow and heat transfer in a 2-D horizontal channel with staggered fins”, Thermal Science, 21: 2443-2455, (2017).
  • [15] Mahanand Y., Abhijit M. and Khamari D.S., “CFD analysis of semi-circular rib roughened solar air heater”, International Journal of Advanced Mechanical Engineering, 8: 251-262, (2018).
  • [16] Sahu M.K., Pandey K.M. and Chatterjee S., “Numerical investigation of thermal-hydraulic performance of channel with protrusions by turbulent cross flow jet”, AIP Conference Proceedings, 1966:020021, (2018).
  • [17] “ANSYS Fluent 17.0 Theory Guide”, ANSYS Inc, (2016).
  • [18] Launder B.E. and Spalding D.B., “Lectures in mathematical models of turbulence”, Academic Press, London, England, (1972).
  • [19] Yakhot V. and Orszag S.A., “Renormalization group analysis of turbulence I basic theory”, Journal of Scientific Computing, 1: 1-51, (1986).
  • [20] Shih T.H., Liou W.W., Shabbir A., Yang Z. and Zhu J., “A new k- eddy-viscosity model for high Reynolds number turbulent flows”, Computers Fluids, 24: 227- 238, (1995).
  • [21] Wilcox D.C., “Turbulence modeling for CFD”, DCW Industries, Inc. La Canada, California, (1998).
  • [22] Menter F.R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32: 1598-1605, (1994).
  • [23] Rokni M., “Numerical investigation of turbulent fluid flow and heat transfer in complex ducts”, Doctoral thesis, Lund University, Lund Institute of Technology, (1998).
  • [24] Pak B.C. and Cho Y.I., “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Experimental Heat Transfer, 11: 151-170, (1998).
  • [25] Ababaei A., Arani A.A.A. and Aghaei A., “Numerical investigation of forced convection of nanofluid flow in microchannels: effect of adding micromixer”, Journal of Applied Fluid Mechanics, 10: 1759-1772, (2017).
  • [26] Pourfattah F., Motamedian M., Sheikhzadeh G., Toghraie D. and Akbari O.A., “The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of water-Al2O3 nanofluid in a tube”, International Journal of Mechanical Sciences, 131- 132: 1106-1116, (2017).
  • [27] Amanuel T. and Manish M., “Investigation of thermohydraulic performance of triple concentric-tube heat exchanger with CuO/water nanofluid: Numerical approach”, Heat Transfer Asian Research, 97: 974-995, (2018).
  • [28] Moraveji M.K., Barzegarian R., Bahiraei M., Barzegarian M., Aloueyan A. and Wongwises S., “Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels”, Journal of Thermal Analysis and Calorimetry, 135: 671–683, (2019).
  • [29] Moldoveanu G.M. and Minea A.A., “Specific heat experimental tests of simple and hybrid oxidewaternanofluids: proposing new correlation”, Journal of Molecular Liquids, 279: 299-305, (2019).
  • [30] Hamilton R.L. and Crosser O.K., “Thermal conductivity of heterogeneous two component systems”, Industrial & Engineering Chemical Fundamentals, 1: 187–191, (1962).
  • [31] Cengel Y.A. and Ghajar A.J., “Heat and mass transfer; fundamentals and applications”, 4th edn., McGraw Hill, New York, (2011).
  • [32] Praveen A., Babu P.S. and Mamilla V.R., “Analysis on heat transfer in nanofluids for Al2O3/water”, International Journal of Advanced Scientific Research and Technology, 2: 134-140, (2012).
  • [33] Arzani H.K., Arzani H.K., Kazi S.N. and Badarudin A., “Numerical study of developing laminar forced convection flow of water/CuO nanofluid in a circular tube with a 180 degree curve”, World Academy of Science, Engineering and Technology, International Journal of Materials and Metallurgical Engineering, 10: 795-802, (2016).
  • [34] Kezzar M., Nafir N., Tabel I. and Khanetout A., “A new analytical investigation of natural convection of nonNewtonian nanofluids flow between two vertical flat plates by the generalized decomposition method (GDM)”, Journal of Thermal Engineering, 4: 2490- 2508, (2018).
  • [35] Pakdaman M.F., Akhavan-Behabadi M.A. and Razi P., “An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes”, Experimental Thermal and Fluid Science, 40: 103–111, (2012).
  • [36] Ahmed H.E., Yusoff M.Z., Hawlader M.N.A., Ahmed M.I., Salman B.H. and Kerbeetf A.Sh., “Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators”, International Journal of Heat and Mass Transfer, 105: 495-504, (2017).
  • [37] Boukerma K. and Kadja M., “Convective heat transfer of Al2O3 and CuO nanofluids using various mixtures of water-ethylene glycol as base fluids”, Engineering, Technology & Applied Science Research, 7: 1496-1503, (2017)
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Farklı Martenzit Hacim Oranlarında Kırılma Tokluğu Değerlerinin İncelenmesi

Mehmet Fatih AYCAN

Meta-Sezgisel Arama Sürecinin Analiz, Test ve Yönetimi: SOS Üzerine Deneysel Bir Çalışma

Eyüp GEDİKLİ, Hamdi Tolga KAHRAMAN, Uğur GÜVENÇ, Sefa ARAS, Yusuf SÖNMEZ

Hava akışkanlı güneş kollektöründe ısı transferi iyileştirmesine etki eden parametrelerin taguchi metodu ile optimizasyonu

İsmail ATA, Adem ACIR

Akım İşlemsel Kuvvetlendiricisi Tabanlı GerilimModlu MOS-C Tüm-Geçiren Süzgeç ve Uygulaması

Ahmet GÖKÇEN, Hasan ÇİÇEKLİ, İhsan KARACAN

Analysing mechanical behaviors of carbon fiber reinforced silicone matrix composite materials after static folding Malzemelerin Statik Katlama Sonrası Mekanik Davranışlarının Analiz Edilmesi

İ.sinan ATLI, ATİLLA EVCİN

Bir Buhar Kazanındaki Kızdırıcı – Atemperatör Sisteminin Mathcad Yazılımı ile İteratif Isıl Tasarım Modellemesi ve Performans Analizi

Ali Can YİĞİT, A. İbrahim ATILGAN

The Effect of Organic Waste Potential of Mersin Province on Biogas Energy Production

Bekir YELMEN, Metin DAĞTEKİN, M. Tarık ÇAKIR

Mineral katkı içeren kalsiyum alüminat çimento esaslı harçların mekanik, dayanıklılık, termal ve içyapı özelliklerinin araştırılması

MURAT TUYAN, Kübra Sevcan SOYKAN, İrem NAMAL, Özge ANDIÇ ÇAKIR

QStE 420 TM Çeliğinin MAG Kaynak Yöntemiyle Kaynaklanmasında Dolgu Metali Türünün Metalürjik ve Mekanik Özelliklere Etkisinin Belirlenmesi

Mustafa HARMAN, HAKAN ADA, Cemil ÇETİNKAYA

Scalar Speed Control of Induction Motors with Difference Frequency

Özcan OTKUN