TARİHİ KENT MEYDANLARINDAKİ BİTKİLERİN CBS TABANLI MEKANSAL DAĞILIM ANALİZİ; İSTANBUL ÖRNEĞİ

19. Yüzyıl itibari ile kentleşmenin artması ve iklim değişikliği etkilerinin kentlerde daha yoğun olarak hissedilmesi bitkilerin meydanlarda daha etkin rol almasını sağlamıştır. Ancak antropojenik faktörlerin etkisi nedeniyle bu tür kentsel alanlardaki bitki kompozisyonlarının mekânsal dağılımı ve bileşimi sürekli olarak değişmiş ve göz ardı edilmiştir. Oysa ki, bitki dağılımları bitkiler arası mesafe veya aynı türlerin bitki tasarımındaki birliktelikleri ekosistem fonksiyonlarına ve ekosistem hizmetlerine birey düzeyinde etki etmektedir. Bu çalışmanın amacı;tarih boyunca farklı olaylara tanıklık eden meydanlardaki bitki materyali ve mekan ilişkisini incelemektir. Bu kapsamda İstanbul’ da yer alan Beyazıt, Dolmabahçe, Eminönü, Eyüp, Galata, Ortaköy, Sultan Ahmet, Taksim, Tophane, Üsküdar meydanları bitki türleri ve yoğunluk-mekasal dağılım ilişkileri açısından irdelenmiştir. Çalışma bulgularına göre, 27 faklı aileden toplam 58 farklı tür tercih edildiği belirlenmiştir. P<0,01 anlamlılık düzeyinde Beyazıt, Eminönü, Ortaköy ve Üsküdar; p<0,10 anlamlılık düzeyinde Sultanahmet meydanlarında kümelenmiş dağılım göstermektedir. p<0,01 anlamlılık düzeyinde Taksim; p<0,05 anlamlılık düzeyinde Dolmabahçe ve Galata; p<0,10 anlamlılık düzeyinde Tophane meydanlarında dağınık dağlım söz konusudur. Meydanlarda heterojenlik en yüksek Eyüp Meydanında görülmektedir. Kernel density analizi sonuçlarına göre, Eyüp ve Sultanahmet Meydanı’ nda yoğunluğu tüm meydanda eşit dağıldığı belirlenmiştir. Galata Meydanı’nda bitkiler hem sayıca az hem de en düşük yoğunluğa sahiptir. Sonuç olarak, meydanlardaki bitkisel dağılım o mekandaki hem ekolojik hem estetik fonksiyonlara etki etmektedir. 

GIS-BASED SPATIAL DISTRIBUTION ANALYSIS OF PLANTS IN HISTORICAL CITY SQUARES; CASE OF ISTANBUL

By the 19th century, the increase in urbanization and the fact that the effects of climate change were felt more intensely in cities, enabled plants to take a more active role in squares. However, due to the influence of anthropogenic factors, the spatial distribution and composition of plant such urban areas has been constantly changed and ignored. Yet, plant distributions, the distance between plants or the association of the same species in plant design affect ecosystem functions and ecosystem services at the individual level. The aim of this study is to examine the relationship between plant material and spatial distribution in the squares that have witnessed different events throughout history. In this context, Beyazıt, Dolmabahçe, Eminönü, Eyüp, Galata, Ortaköy, Sultan Ahmet, Taksim, Tophane, Üsküdar Squares in Istanbul were examined in terms of plant species and density-spatial distribution relations. According to the findings of the study, it was determined that a total of 58 different species from 27 different families were preferred. Beyazıt, Eminönü, Ortaköy and Üsküdar at the significance level of p <0.01; At p <0.10 significance level, it shows a clustered distribution in Sultanahmet squares. Taksim at p <0.01 significance level; Dolmabahçe and Galata at the significance level of p <0.05; p <0.10 significance level, there is a scattered distribution in Tophane Squares. The highest heterogeneity in squares is observed in Eyüp Square. According to the results of the kernel density analysis, it was determined that the density in Eyüp and Sultanahmet Square are equally distributed throughout the square. In Galata Square, the plants are both few in number and the lowest in density. As a result, the vegetative distribution in the squares affects both the ecological and aesthetic functions in that space.

___

  • Acarlı B, Kiper T, Korkut A, (2018). Kent Meydanlarının Fiziksel Mekan Kalitesi: İstanbul Taksim Meydanı ve Yakın Çevresi, Kent 29-41. Bullock JM, González LM, Tamme R, Gotzenberger L, White SM, Partel M, & Hooftman, D.A.P. (2017). A Synthesis of Empirical Plant Dispersal Kernels. Journal of Ecology, 105, 6– 19.
  • Carroll S, Pearson D, (2000). Detecting and Modeling Spatial and Temporal Dependence in Conservation Biology. Conserv. Biol. 14: 1893-1897.
  • Clark PJ, Evans FC, (1954). Distance to Nearest Neighbour as a Measure of Spatial Relationships in Populations. Ecology, 35, 445 453.
  • Condit R, Pitman N, Leigh EG, Jr Chave J, Terborgh J, Foster RB, Núñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, and Hubbell, SP (2002). Beta-diversity in Tropical Forest Trees. Science, 295(5555): 666–669. doi:10.1126/science.1066854. PMID:11809969.
  • Dale M (1999). Spatial Pattern Analysis in Plant Ecology (Cambridge Studies in Ecology). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511612589. Dian Y, Pang Y, Dong Y, & Li Z (2016). Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data. Journal of The Indian Society of Remote Sensing, 44(4), 595–603.
  • Diggle PJ, (1983). Statistical Analysis of Spatial Point Patterns. Academic Press, New York.148 pp. Du, H, Hu, F, Zeng, F. et al. (2017). Spatial Distribution of Tree Species in Evergreen-deciduous Broadleaf Karst Forests in Southwest China. Sci Rep 7, 15664. https://doi.org/10.1038/s41598-017-15789-5.
  • Erdönmez E, ve Abay E (2018). Roma Popolo Meydanı Bağlamında Kamusal Mekan Kalitesinin Ölçülmesi. Kent Akademisi, 11 (33), Issue 1, 44-59. Excoffier L, Foll M & Petit, R(2009) Genetic Consequences of Range expansions. Annual Review of Ecology, Evolution, and Systematics, 40, 481– 501.
  • Fauole P (1995). Squares in Contemporary Architecture. Waanders Publishers Architectura & Natura Press, Amsterdam.
  • Fisher R, A Corbet and Williams C (1943). The Relation Between the Number of Species and the Number of İndividuals in a Random Sample of an Animal Population. Journal of Animal Ecology 12:42-58.
  • Folt CL, and Burns CW(1999). Biological Drivers of Zooplankton Patchiness. Trends Ecol. Evol. 14(8): 300–305. doi:10.1016/S0169-5347(99)01616-X. PMID: 10407426. Gaston K and Blackburn T (2000). Pattern and Process in Macroecology. Blackwell Scientific, Oxford, UK.
  • Guo Y, Lu J, Franklin SB, Wang Q, Xu Y, Zhang, K, Bao D, Qiao X, Huang H, Lu Z and Jiang M (2013). Spatial Distribution Of Tree Species in A Species-Rich Subtropical Mountain Forest İn Central China. Can. J. For. Res. 43: 826–835 (2013) dx.doi.org/10.1139/cjfr-2013-0084.
  • Hai NH, Wiegand K & Getzin, S(2014). Spatial Distributions of Tropical Tree Species in Northern Vietnam under Environmentally Variable Site Conditions. Journal of Forestry Research 25(2), 257–268.
  • Harte J, Conlinsk E, Ostling A, Green JL&Smith, AB (2005). A Theory of Spatıal Structure in Ecologıcal Communllles at Multıple Spatıal Scales. Ecological Monographs, 75(2), pp. 179-197.
  • He E, and Legendre P (2002). Species Diversity Patterns De- rived from Species Area Models. Ecology 831185-1198. Hurd JD, & Civco D L (2008). Assessing the İmpact of Land Cover Spatial Resolution on Forest Fragmentation Modeling. In Proceedings of the 2008 ASPRS Annual Convention (Vol. 10). Portland, OR.
  • Krebs C (1994). Ecology: the Experimental Analysis of Dis- tribution and Abundance. Harper Collins, New York, New York, USA.
  • Kremer A, Ronce O, Robledo‐Arnuncio, JJ et al. (2012). Long‐distance Gene Flow and Adaptation of Forest Trees to Rapid Climate Change. Ecology Letters, 15, 378– 392. Kühn I, Brandl R, Klotz S (2004). The Flora of German Cities is Naturally Species Rich. Evol. Ecol. Res. 6, 749–764.
  • Li L, Huang ZL, Ye WH, Cao HL, Wei SG, Wang ZG, Lian, JY, Sun YF, Ma KP, and He, FL (2009). Spatial Distributions of Tree Species in a Subtropical Forest of China. Oikos, 118(4): 495–502. doi:10.1111/j.1600-0706.2009.16753.x.
  • Lin YC, Chang LW, Yang KC, Wang HH& Sun IF, (2011). Point Patterns of Tree Distribution Determined by Habitat Heterogeneity and Dispersal Limitation. Oecologia 165, 175–184.
  • Lortie CJ, Brooker, RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI and Callaway RM(2004). Rethinking Plant Community Theory. Oikos, 107(2): 433–438. doi:10.1111/j.0030-1299.2004.13250.x.
  • Mathieu R, Aryal J, & Chong A K(2007). Object-Based Classification of Ikonos İmagery for Mapping Large-scale Vegetation Communities in Urban Areas. Sensors, 7(11), 2860–2880.
  • Mitchell A (2005) .The ESRI Guide to GIS Analysis, Volume 2. ESRI Press.
  • Morales‐Castilla I, Matias MG, Gravel D& Araújo MB(2015). Inferring Biotic İnteractions from Proxies. Trends in Ecology & Evolution, 30, 347– 356.
  • Murrell, DJ (2009). On the Emergent Spatial Structure of Size-structured Populations: When Does Self-thinning Lead to a Reduction in Clustering? J. Ecol. 97(2): 256–266. doi:10.1111/j.1365-2745.2008.01475.x.
  • Nowak DJ, Hoehn R, Crane DE,Weller L, Davila A (2011). Assessing Urban Forest Effects and Values: Los Angeles’s Urban Forest. USDA Forest Service, Northern Resource Bulletin NRS-47, Newtown Square, PA, Pp. 30.
  • Özkan UY, Demirel T, Özdemir İ, Arekhi M, (2019). Estimation of Structural Diversity in Urban Forests Based on Spectral and Textural Properties Derived from Digital Aerial Images. Journal of the Indian Society of Remote Sensing (December 2019) 47(12):2061–2071.
  • Öztan Y, (1998). Kentler ve Meydanlar. Maison Française Dergisi, No:33, 154-157, İstanbul.
  • Perry GLW, Enright NJ, Miller BP, and Lamont, B.B. (2008). Spatial Patterns in Species-rich Sclerophyll Shrublands of Southwestern Australia. J. Veg. Sci. 19(5): 705–716. doi:10.3170/2008-8-18441.
  • Peters HA (2003). Neighbour-regulated Mortality: The İnfluence of Positive and Negative Density Dependence on Tree Populations in Species-rich Tropical Forests. Ecol. Lett. 6(8): 757–765. doi:10.1046/j.1461-0248.2003.00492.x.
  • Pielou EC (1977). Mathematical Ecology. Wiley, New York.
  • Preston E (1948). The Commonness, and Rarity, of Species. Ecology 84:549-562.
  • Rosenzweig M (1995). Species Diversity in Space and Time. Cambridge University Press, Cambridge, UK.
  • Rosenzweig C, Solecki W, Romero-Lankao P, Mehrotra S, Dhakal S, Bowman T and Ali Ibrahim S 2015. ARC3.2 Summary for City Leaders. Urban Climate Change Research Network. Columbia University. New York.Song H. et al.(2017). Investigating distribution pattern of Species in a Warm-temperate Conifer-broadleaved-mixed forest in China for Sustainably Utilizing Forest and Soils. Science of Te Total Environment 578, 81–89.
  • Stoll P, and Newbery D.M. (2005). Evidence of Species-Specific Neighborhood Effects in the Dipterocarpaceae of a Bornean Rain Forest. Ecology, 86(11): 3048–3062. doi:10.1890/04-1540.