Sulu çözeltiden magnezyum amonyum fosfat (MAP) çöktürmesi ile N ve P gideriminin araştırılması

Azot (N) ve fosfor (P) arıtımının gerçekleştirildiği atıksu arıtma tesislerinde struvite veya magnezyum amonyum fosfat (MgNH4PO4.6H2O, MAP) çökelmesi oldukça önemli işletme problemlerinin doğmasına neden olmaktadır. Aynı zamanda ticari bir değere sahip olması da MAP’ın kontrolü ve geri kazanımını önemli kılmaktadır. Bu kapsamda pH, Magnezyum (Mg): N ve N:P molar oranı, farklı Mg2+ kaynakları ve kalsiyum (Ca2+) varlığının MAP kristalizasyonu üzerindeki etkilerini incelemek amacıyla kesikli deneyler yapılmıştır. Deneysel sonuçlar sabit bir Mg:N:P=1:1:1 oranında, optimum pH’ın 9 olduğunu ve bu pH’da N ve P giderme verimlerinin sırasıyla %79.4 ve %88.4 olarak gerçekleştiğini göstermiştir. N ve P için bu arıtma verimleri Mg:N oranının 1.25:1’e çıkarılmasıyla sırasıyla %87.6 ve %99.1’e yükselmiştir. N:P oranının 1:1.15’e çıkarılması ile N giderme verimi %96.4’e yükselmiş ancak, P giderme verimi %96.1’e düşmüştür. %96’nın üzerinde N ve P giderme verimleriyle, en etkili Mg2+ kaynağının MgCl2.6H2O olduğu bulunmuştur. Çözelti içerisinde Ca2+ bulunması durumunda, N giderme veriminin önemli ölçüde azaldığı tespit edilmiştir. Ca2+ olmadığında >%96 olan N giderme veriminin, 1000 mg/L Ca2+ konsantrasyonunda %68.6’ya kadar düştüğü belirlenmiştir. Çökelti üzerinde yapılan XRD analizinde oluşumun MAP kristali olduğu, Ca2+ ilavesinde ise MAP’ın yerine Ca2+’ca zengin amorf bir yapının oluştuğu tespit edilmiştir.

Investigation of N and P removal from aqueous solution by magnesium ammonium phosphate (MAP) precipitation

Precipitation of struvite or magnesium ammonium phosphate (MgNH4PO4.6H2O, MAP) in wastewater treatment plants where nitrogen (N) and phosphorus (P) treatment is carried out causes very important operational problems. Also, since MAP has commercial value, its control and recovery is important. Therefore, batch experiments were conducted to examine the effects of pH, Magnesium (Mg): N and N:P molar ratio, different Mg2+ sources and the presence of calcium (Ca2+) on MAP crystallization. Experimental results showed that at a constant Mg:N:P=1:1:1 ratio, the optimum pH was 9, and the N and P removal efficiencies at this pH were 79.4% and 88.4% respectively. These removal efficiencies for N and P increased to 87.6% and 99.1%, respectively, by increasing the Mg:N ratio to 1.25:1. By increasing the N:P ratio to 1:1.15, the N removal efficiency increased to 96.4%, but the P removal efficiency decreased to 96.1%. The most effective source of Mg2+ was found to be MgCl2.6H2O, with N and P removal efficiencies of over 96%. It was found that the N removal efficiency was significantly reduced in the presence of Ca2+ in the solution. It was determined that the N removal efficiency, which was >96% in the absence of Ca2+ , decreased to 68.6% at 1000 mg/L Ca2+ concentration. In the XRD analysis performed on the sediment, it was determined that the formation was a MAP crystal, and in the addition of Ca2+, an amorphous structure rich in Ca2+ was formed instead of MAP.

___

  • [1] Kumari S, Jose S, Tyagi M, Jagadevan S. “A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater”. Journal of Cleaner Production, 254, 1-14, 2020.
  • [2] Yetilmezsoy K, Kocak E, Akbin HM, Özçimen D. “Utilization of struvite recovered from high-strength ammoniumcontaining simulated wastewater as slow-release fertilizer and fire-retardant barrier”. Environmental technology, 41(2), 153-170, 2020.
  • [3] Guaya D, Valderrama C, Farran A, Armijos C, Cortina JL. “Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite”. Chemical Engineering Journal, 271, 204-213, 2015.
  • [4] Lee WPC, Mah SK, Leo CP, Wu T, Chai SP. “Performance studies of phosphorus removal using cross-flow nanofiltration”. Desalin Water Treat, 52(31-33), 5974-5982, 2014.
  • [5] Li S, Zeng W, Xu H, Jia Z, Peng Y. “Performance investigation of struvite high-efficiency precipitation from wastewater using silicon-doped magnesium oxide”. Environmental Science and Pollution Research, 27, 15463-15474, 2020.
  • [6] Oztekın M, Akgul V, Duyar A, Gocer S, Cırık, K. “Design of Ammonium Stripping Tower and Optimization of Ammonium Removal From Landfill Leachate”. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 23(4), 188-196, 2020.
  • [7] Acelas NY, Martin BD, Lopez D, Jefferson B. “Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media”. Chemosphere, 119, 1353-1360, 2015.
  • [8] Schuiling RD, Andrade A. “Recovery of struvite from calf manure”. Environmental Technology, 20, 767-768, 1999.
  • [9] Tünay O, Kabdaşlı I, Orhon D, Ateş E. “Characterization and Pollution Profile of Leather Tanning İndustry in Turkey”. Water Science Technology, 32(12), 1-9, 1995.
  • [10] Jaffer Y, Clark TA, Pearce P, Parsons SA. “Potential phosphorus recovery by struvite formation”. Water research, 36(7), 1834-1842, 2002.
  • [11] El Diwani G, El Rafie S, El Ibiari NN, & El-Aila HI. “Recovery of ammonia nitrogen from industrial wastewater treatment as struvite slow releasing fertilizer”. Desalination, 214(1-3), 200-214, 2007.
  • [12] Kim D, Ryu HD, Kim MS, Kim J, Lee, SI. “Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate”. Journal of Hazardous materials, 146(1-2), 81-85, 2007.
  • [13] Yetilmezsoy K, Sapci-Zengin Z. “Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer”. Journal of Hazardous materials, 166(1), 260-269, 2009.
  • [14] Rahman MM, Liu Y, Kwag JH, Ra C. “Recovery of struvite from animal wastewater and its nutrient leaching loss in soil”. Journal of hazardous materials, 186(2-3), 2026-2030, 2011.
  • [15] Barbosa SG, Peixoto L, Meulman B, Alves MM, Pereira MA. “A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources”. Chemical Engineering Journal, 298, 146-153, 2016.
  • [16] James DD. Simon AP. “Struvite Formation, Control and Recavery”. Water Research, No, 36, s. 3925-3940, 2002.
  • [17] Özcan P. “Mezbaha Endüstrisi Atıksularında Magnezyum Amonyum Fosfat Çöktürmesi İle Azot Giderimi”. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 53, 2001.
  • [18] Doyle JD, Parsons SA. “Struvite formation, control and recovery”. Water Research, 36, 3925-3940, 2002.
  • [19] Chirmuley DG. “Struvite precipitation in WWPTS, causes and solutions”. Water-Melbourne then Artarmon-, 21, 21-21, 1994.
  • [20] Liu Z, Zhao Q, Wei L, Wu D, & Ma L. “Effect of struvite seed crystal on MAP crystallization”. Journal of Chemical Technology & Biotechnology, 86(11), 1394-1398, 2011.
  • [21] Shin HS, Lee SM. “Removal of nutrients in wastewater by using magnesium salts”. Environmental Technology, 19, 283-290, 1997.
  • [22] Arnold DW, Wolfram WE. “Ammonia removal and recovery from fertilizer complex wastewaters”. 30th Purdue Industrial Waste Conference Proceedings, 760-767, 1975.
  • [23] Zydbiewska MW, Kula B. “Removal of ammonia nitrogen by the precipitation method on the example of some selected wastewaters”. Water Science Technology, 24(7), 229-234, 1991.
  • [24] Booker NA, Priestly AJ, Fraser IH. “Struvite formation in wastewater treatment plants, opportunities for nutrient recovery”. Environmental Technology, 20, 777-782, 1999.
  • [25] Zhang DM, Chen YX, Jilani G, Wu WX, Liu WL, Han ZY. “Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants”. Bioresource technology, 116, 386-395, 2012.
  • [26] Selçuk Kuşçu Ö, Celik V. “Recovery of nitrogen and phosphorus in sewage sludge by pulsed electrical field technique and struvite production”. Pamukkale Unıversity Journal of Engineering Sciences, 25(6), 700-704, 2019.
  • [27] Hu L, Yu J, Luo H, Wang H, Xu P, Zhang Y. “Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation”. Chemical Engineering Journal, 382, 1-12, 2020.
  • [28] Siegrist H. “Nitrogen removal from digester supernatant comparison of chemical and biological methods”. Water Science Technology, 34(1-2), 399-406, 1996.
  • [29] Huang H, Xu C, Zhang W. “Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology”. Bioresource technology, 102(3), 2523-2528, 2011.
  • [30] Li XZ, Zhao QL. “MAP precipitation from landfill leachate and seawater bittern waste”. Environmental Technology, 23(9), 989-1000, 2002.
  • [31] Wilsenach JA, Schuurbiers CAH, Van Loosdrecht MCM. “Phosphate and potassium recovery from source separated urine through struvite precipitation”. Water Research, 41(2), 458-466, 2007.
  • [32] Crutchik DGJM, Garrido JM. “Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater”. Water Science and Technology, 64(12), 2460-2467, 2011.
  • [33] Bayuseno AP, Schmahl WW. “Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions”. Chemosphere, 250, 1-10, 2020.
  • [34] Capdevielle A, Sýkorová E, Biscans B, Béline F, Daumer ML. “Optimization of struvite precipitation in synthetic biologically treated swine wastewater-Determination of the optimal process parameters”. Journal of hazardous materials, 244, 357-369, 2013.
  • [35] Yan H, Shih K. “Effects of calcium and ferric ions on struvite precipitation, A new assessment based on quantitative X-ray diffraction analysis”. Water Research, 95, 310-318, 2016.
  • [36] Parsons SA, Wall F, Doyle J, Oldring K, Churchley J. “Assesing the potential for struvite recovery at sewage treatment works”. Environmental Technology, 22(11), 1279-1286, 2001.
  • [37] Bouropoulos NC, Koutsoukos PG. “Spontaneous precipitation of struvite from aqueous solutions”. Journal of Crystal Growth, 213, 381-388, 2000.
  • [38] Le Corre KS. Understanding struvite crystallisation and recovery. PhD Thesis, Cranfield University, Cranfield, UK, 2006.
  • [39] Yünsel TY, Ersoy A, Ehsani A. “X-Işını Difraksiyonu Yöntemi ile Kantitatif Mineral İçeriği Tayini ve Çalışma Şartlarının Etkisi”. Artıbilim, Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi, 2(2), 16-28, 2019.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Hazne öncesi kıvılcım ateşlemesi: ön yanma odalı valf fonksiyonlarının güvenilirlik analizi

Faraz AKBAR, Sarah ZAKİ

Bir spor sahasında yüzey tozlarındaki ağır metallerin kirlilik seviyesinin, mikroskobik yapısının ve sağlık riskinin değerlendirilmesi

Kadir ULUTAŞ

Atık kauçuk agregalı betonların mekanik ve durabilite özellikleri üzerine bir inceleme

Arif YILMAZOĞLU, Salih YILDIRIM

Badem kabuğu atığı dolgulu epoksi biyokompozit özelliklerinin incelenmesi

Nimet ÖZMERAL, Süheyla KOCAMAN, Ülkü SOYDAL, Gülnare AHMETLİ

Yeni önerilmiş ikili fare sürüsü algoritması

Emine BAŞ

NiTi alaşımının hidrotermal liç işlemi sırasında farklı mineral asitlerin etkisi

Muhammed İhsan ÖZGÜN, Ahmet Burçin BATIBAY, Bayram ÜNAL, Yasin Ramazan EKER, Arslan TERLEMEZ

Kırsal alanlarda elektrik temini için şebekeden bağımsız mobilite güneş enerjisi üretimi analizi: Şanlıurfa Türkiye’de bir uygulama çalışması

Batur Alp AKGÜL, Fatih ALİSİNANOĞLU, Sadettin OZYAZICI, Muhammet Fatih HASOĞLU, Bülent HAZNEDAR

Yüksek oranda sülfat içeren uçucu küllerin klinker ikame malzemesi olarak kullanılabilirliğinin incelenmesi

Murat SAYDAN, Furkan TÜRK, Ülkü Sultan KESKİN, Hilal SAY

COVİD-19 pandemisinde çok aşamalı VZA ile OECD ülkelerinin etkinlik analizi

Şeyma Meltem KIDAK, Rifat Aykut ARAPOĞLU, Ezgi AKTAR DEMİRTAŞ

OltalamaAvcısı: Oltalama internet sitelerinin otomatik tespiti ve kullanıcı istismarının önüne geçilmesi için modül tasarımı

Samet GANAL, Ecir KÜÇÜKSİLLE, Mehmet Ali YALÇINKAYA