Pik güç azaltımı tabanlı talep cevabı stratejisi ve yük faktörü maksimizasyonu amaçlı bir elektrikli araç toplu park bölgesi enerji yönetim stratejisi

Ulaşım sistemlerinin elektrifikasyonu üzerine son zamanlarda artan ilgi ile birlikte elektrikli araçlar üzerine gerçekleştirilen çalışmalar büyük ivme kazanmıştır. Ancak elektrikli araçlar dağıtım seviyesinden elektrik güç sistemine bağlandıklarından dolayı artan elektrikli araç şarj gereksinimi nedeniyle sistemde önemli bir güç talebi artışı oluşacaktır. Bireysel olarak elektrikli araçların dağıtım sistemine asgari yükü getirecek şekilde koordine edilmesi oldukça zor olsa da özellikle elektrikli araç toplu park bölgeleri bünyesinde ilgili şarj işleminin yönetimi etkin bir opsiyondur. Bu durum özellikle son zamanlarda akıllı şebekeler kapsamındaki talep cevabı konsepti ile de ilişkilendirilmektedir. Bu bağlamda bu çalışmada, pik güç azaltımı tabanlı bir talep cevabı stratejisinin gereksinimini karşılayacak ve aynı zamanda ilgili şarj gücü değişiminin yük faktörünü azami hale getirecek şekilde bir işletim sağlayacak bir enerji yönetim stratejisi önerilmektedir.

A peak power reduction based demand response strategy and load factor maximization oriented electric vehicle parking lot energy management strategy

Together with the increasing attention on the electrification of transportation systems, the studies realized on electric vehicles have gained a great acceleration. However, as the electric vehicles are connected to the electric power system from the distribution level, an important power demand increase will occur in the system due to the electric vehicle charging requirements. Even the coordination of individual electric vehicles so as to bring minimum loading to the distribution system is significantly hard, especially the management of the relevant charging process within the electric vehicle parking lots is an effective option. Specifically, this issue has been linked with the demand response concept in smart grid content. In this regard, in this study an energy management strategy that can ensure the requirements of a peak power reduction oriented demand response strategy and can provide an operation that maximizes the load factor of the relevant charging power variation is proposed.

___

  • Erdinç O, Taşcıkaraoğlu A, Paterakis NG, Eren Y, Catalão JP. “End-user comfort oriented day-ahead planning for responsive residential HVAC demand aggregation considering weather forecasts”. IEEE Transactions on Smart Grid, 8(1), 362-372, 2017.
  • Paterakis NG, Taşcıkaraoğlu A, Erdinc O, Bakirtzis AG, Catalao JP. “Assessment of demand-response-driven load pattern elasticity using a combined approach for smart households”. IEEE Transactions on Industrial Informatics, 12(4), 1529-1539, 2016.
  • Gellings CW. The Smart Grid: Enabling Energy Efficiency and Demand Response. Lilburn, Georgia, USA, Fairmont Press, 2009.
  • U.S. Department of Energy. “Smart Grid System Report”. https://www.energy.gov/sites/prod/files/2009%20Smart%20Grid%20System%20Report.pdf (12.10.2016).
  • Paterakis NG, Erdinç O, Catalão JP. “An overview of Demand Response: Key-elements and international experience”. Renewable and Sustainable Energy Reviews, 69, 871-891, 2017.
  • Recargo, Inc. “BMW i3 Specifications”. http://www.plugincars.com/bmw-i3.html (12.10.2016).
  • Tesla, Inc. “Tesla Home Charging Station Specifications”. https://www.tesla.com/support/home-charging-installation#technical-specs (12.10.2016).
  • Renault S.A. “Renault ZOE Specifications”. https://www.renault.ie/vehicles/new-vehicles/zoe/battery-and-charging.html (12.10.2016).
  • Tesla, Inc. “Tesla SuperCharger Specifications”. https://www.tesla.com/supercharger (12.10.2016).
  • Shafie-khah M, Heydarian-Forushani H, Osorio GJ, Gil FAS, Aghaei J, Barani M, Catalao JPS. “Optimal behavior of electric vehicle parking lots as demand response aggregation agents”. IEEE Transactions on Smart Grid, 7(6), 2654-2665, 2016.
  • Jannati J, Nazarpour D. “Optimal energy management of the smart parking lot under demand response program in the presence of the electrolyser and fuel cell as hydrogen storage system”. Energy Conversion and Management, 138, 659-669, 2017.
  • Nezamoddini N, Wang Y. “Risk management and participation planning of electric vehicles in smart grids for demand response”. Energy, 116, 836-850, 2016.
  • Akhavan-Rezai E, Shaaban MF, El-Saadany EF, Karray F. “New EMS to incorporate smart parking lots into demand response”. IEEE Transactions on Smart Grid, 2017, 9(2), 1376-1386, 2018.
  • Heydarian-Forushani E, Golshan MEH, Shafie-khah M, Siano P. “Optimal operation of emerging flexible resources considering sub-hourly ramp product”. IEEE Transactions on Sustainable Energy, 9(2), 916-929, 2018.
  • Mohan V, Singh JG, Ongsakul W. “Sortino ratio based portfolio optimization considering EVs and renewable energy in microgrid power market”. IEEE Transactions on Sustainable Energy, 8(1), 219-230, 2017.
  • Zhang L, Li Y. “Optimal management for parking-lot electric vehicle charging by two-stage approximate dynamic programming”. IEEE Transactions on Smart Grid, 8(4), 1722-1730, 2017.
  • Awad ASA, Awad MFS, El-Fouly THM, El-Saadany EF, Salama MMA. “Optimal resource allocation and charging prices for benefit maximization in smart PEV-parking lots”. IEEE Transactions on Sustainable Energy, 8(3), 906-915, 2017.
  • Dünya Bankası. “Implementing a computable general equilibrium model on GAMS : the Cameroon model”. http://documents.worldbank.org/curated/en/867181468236660050/Implementing-a-computable-general-equilibrium-model-on-GAMS-the-Cameroon-model (12.10.2016).
  • IBM Analytics. “CPLEX Optimizer”. https://www.ibm.com/analytics/cplex-optimizer (12.10.2016).
  • Tesla, Inc. “SuperCharger”. https://www.tesla.com/supercharger (12.10.2016).