Maden sahası atıklarında bağlayıcı materyal ve Thiobacillus thiooxidans varlığının ağır metal mobilizasyonuna etkisinin araştırılması

Çalışmada, terk edilmiş bir Pb-Zn madeni ve işletilmekte olan bor madeni atıklarındaki arsenik (As), bor (B), kadmiyum (Cd), bakır (Cu), mangan (Mn), kurşun (Pb), talyum (Tl) ve çinko (Zn) elementlerinin toplam konsantrasyonları, kimyasal bağlanma formlarındaki dağılımları ile bu elementlerin bağlayıcı materyal ve asidik bakteri olan Thiobacillus thiooxidans varlığında mobilizasyonları incelenmiştir. Ayrıca atık ve bağlayıcı materyallerdeki sülfür ve karbonat miktarları da belirlenerek, statik testlere göre atıkların asit nötralize etme potansiyeli hesaplanmıştır.  Mobilizasyon çalışmaları için iki farklı bölgeden temin edilen atık ile bağlayıcı materyal olarak seçilen leonardit ve evsel katı atık kompostu farklı oranlarda karıştırılmak suretiyle (10/0, 9.5/0.5, 9/1, 8/2) deneyler yürütülmüştür. Ayrıca, sülfür oksitleyen bir bakteri olan Thiobacillus thiooxidans’ın ortama ilave edilmesiyle mobilizasyona olan etkisi çalışılmıştır. Standart bir liç testi olan EPA 1310B Ekstraksiyon Prosedürü kullanılarak mobilize olan ağır metaller tespit edilmiş, bulgular SPSS 24 programı ile istatistiksel olarak değerlendirilerek çalışılan parametreler arasındaki korelasyonlar ortaya çıkarılmıştır. Leonardit ve kompostun maden atıklarına karıştırılmasıyla, ağır metal mobilitesinde istatistiksel olarak anlamlı bir azalma görülmemiştir. Ancak farklı bağlayıcı materyaller, ağır metal türüne göre farklı etkiler göstermiştir.  Sonuç olarak, ortamda Thiobacillus thiooxidans olması durumunda ağır metal mobilitesinin arttığı ve bunun öncelikli olarak değişken ve asitle çözülebilir fraksiyonda ve sonrasında indirgenebilir fraksiyon ile organik fraksiyonlarına bağlı metal miktarı ile doğru orantılı olduğu anlaşılmıştır.

Investigation of the effect of binding material and Thiobacillus thiooxidans on the heavy metals mobilization in the mine tailings

The total concentrations of arsenic (As), boron (B), cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb), thallium (Tl) and zinc (Zn) in the mine tailings of an abandoned Pb-Zn mining site and an open boron mining site are investigated in this study. In addition, heavy metals’ distributions in chemical binding forms and their mobilities with the presence of binding materials and acidic bacteria are examined. The amounts of sulfur and carbonate in the waste and binding materials are also determined according to the static method, in order to define the acid neutralization potential of the wastes. For mobilization studies, mine tailings are mixed with with leonardite and domestic solid waste compost in different ratios (10/0, 9.5 / 0.5, 9/1; 8/2). Independent from the binding materials, the mobilization effect of sulfur oxidizing Thiobacillus thiooxidans bacteria has been tested and evaluated. Experiments are conducted using a standard leach test EPA 1310B Extraction Procedure, and correlations between the parameters studied were statistically evaluated using the findings of SPSS 24. Although there is no statistically significant reduction in metals’ mobilization with the use of leonardite and waste compost, it has been concluded that different binding agents may have different impacts due to the metal type. As a result, it is understood that metals mobility increases in the presence of Thiobacillus thiooxidans in the environment, and that the heavy metal mobility is directly proportional to the exchangeable and acid soluble fraction, followed by the reducible fraction and the amount of metals bound to the organic fractions.

___

  • Salomons W. “Environmental impact of metals derived from mining activities: Processes, predictions, prevention”. Journal of Geochemistry Exploration, 52(1-2 ), 5-23, 2005.
  • Dudka S, Adriano DC. “Environmental impacts of metal ore mining and processing: a review”. Journal of Environmental Quality, 26(3), 590-602, 1997.
  • Ahmari S, Zhang L. “Durability and leaching behavior of mine tailings-based geopolymer bricks”. Construction Building Materials, 44, 743-750, 2013.
  • Gümgüm B, Öztürk G. “Chemical Speciation of heavy metals in the Tigris River sediment”. Chemical Speciation and Bioavailability, 13(1), 25-29, 2001.
  • Nordstrom DK, Jenne EA, Ball, JW. Redox equilibria of iron in acid mine waters. Editor: Jenne EA. Chemical modeling in aqueous systems. 51-79, American Chemical Society, Washington, 1979.
  • Durkin TV, Herrmann JG. “Focussing the problems of Mining waste: An introduction to Acid Mine Drainage” . EPA Seminar publication no. EPA/625/R-95/007, Managing environmental problems at inactive and Abandoned metal mine sites, 1994.
  • Akcil A, Koldas S. “Acid Mine Drainage (AMD): causes, treatment and case studies”. Journal of Cleaner Production, 14, 1139-1145, 2006.
  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K. “Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?”. Journal of Hazardous Materials, 266, 141-166, 2014.
  • Misra M, Yang K, Mehta RK. “Application of flyash in the agglomeration of reactive mine tailings”. Journal of Hazardous Materials, 51, 18I-192, 1996.
  • Bertocchi AF, Ghiani M, Peretti R, Zucca A. “Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn”. Journal of Hazardous Material, 134, 112-119, 2006.
  • Rios CA, Williams CD, Roberts CL. “Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites”. Journal of Hazardous Materials, 156, 23-35, 2008.
  • Costa MC, Santos ES, Barros RJ, Pires C, Martins M. “Wine wastes as carbon source for biological treatment of acid mine drainage”. Chemosphere, 75, 831-836, 2009.
  • Songa H, Yimb GJ, Jib SW, Neculitac CM, Hwang T. “Pilot-scale passive bioreactors for the treatment of acid mine drainage: Efficiency of mushroom compost vs. mixed substrates for metal removal”. Journal of Environmental Management, 111, 150-158, 2012.
  • Tao X, Li A, Yang H. “Immobilization of metals in contaminated soils using natural polymer-based stabilizers”. Environmental Pollution, 222, 348-355, 2017.
  • California Mining Association. “Mine Waste Management”. Edited and Authored by Hutchison I, Ellison RD. Sacramento, CA, 1991.
  • Çevre ve Şehircilik Bakanlığı. “Maden Atıkları Yönetmeliği”. http://www.resmigazete.gov.tr/eskiler/2015/07/20150715-3.htm (31.03.2018).
  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL. “Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil”. Environmental Pollution, 158, 2282-2287, 2010.
  • Boechat CL, Pistoia VC, Ludtke AC, Gianello C, Camargo FAO. “Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances”. Revista Brasileira de Ciencia do Solo, 40:e0150383, 2016.
  • Gül S. “Balıkesir/Balya Pb-Zn Maden Atık Sahasının Biyojeokimyası ve Asidik Maden Drenajı Oluşumuna Etkilerinin Araştırılması”. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2014.
  • Güven D. “Heavy Metals Bioleaching in the Sediments of Izmir Inner Bay”. PhD Thesis, Dokuz Eylul University, Izmir, Turkey, 2008.
  • DSMZ. “Growth mediums of Thiobacillus spp”, retrieved May25, 2005 from http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium271.pdf (31.03.2018).
  • Standard Methods for the Examination Water and Wastewater. 18th edition. American Public Health Association, Washington DC, USA, 1992.
  • Franson MAH, Greenberg AE, Clesceri LS, Eaton AD. Standard Methods for the Examination Water and Wastewater. 18th edition. American Public Health Association, Washington DC, USA, 9-99, 1992.
  • Chen M, Ma LQ. “Comparison of three aqua regia digestion methods for twenty Florida soils”. Soil Science Society of America Journal, 65, 491-499, 2001.
  • Rowell DL. Soil Science: methods and applications. Harlow, Essex: Longman Scientific & Technical, New York, Wiley, 1994. ISBN: 0582087848.
  • Lawrence RW, Jaffe S, Broughton LM. “In-house Development of the Net Acid Production Test Method”. Coastech Research, 1988.
  • Brodie, MJ, Broughton LM, Robertson AM. “A Conceptual Rock Classification System for Waste Management and a Laboratory Method for ARD Prediction from Rock Piles”. Second International Conference on the Abatement of Acidic Drainage. Montreal, Canada. 16-18 September 1991.
  • Rauret G, Lopez-Sanchez JF, Sahuquillo A, Rubio R, Davidson C, Ure AM, Muntau H. “Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials”. Journal of Environment Monitoring, 1, 57-61, 1999.
  • Method 1310B Extraction Procedure (EP) Toxıcity Test Method and Structural Integrity Test. https://www.epa.gov/hw-sw846/sw-846-test-method-1310b-extraction-procedure-ep-toxicity-test-method-and-structural (27.03.2018).
  • Cox PA. The Elements : Their Origin, Abundance, and Distribution. Oxford, UK, Oxford University Press,1989.
  • Daniela K, Jakub E, Lukas P. “Effect of Compost Amendment on Heavy Metals Transport to Plant”. Mendelnet, 249-254, 2015.
  • Ruttens A, Colpaert JV, Mench M, Boisson J, Carleer R, Vangronsveld J. “Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching”. Environmental Pollution, 144, 533-539, 2006.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ