Çokdeğişkenli analiz ile katalitik hızlı pirolizin biyoyağ bileşenlerinin değerlendirilmesi

Katalitik hızlı piroliz yöntemi ile üretilen biyoyağdaki kimyasalların varlığı ve verimleri proses parametreleri tarafından etkilenmekte, dolayısıyla, kimyasallar ve proses parametreleri arasındaki ilişkiler çokdeğişkenli analiz teknikleri ile detaylı bir şekilde araştırılmalıdır.  Bu çalışma temel bileşenler analizi (PCA) ve hiyeraraşik sınıflama analizini (HCA) kullanarak belediye katı atıklarının katalitik hızlı piroliz deneylerinin 24 örneğine (konusuna) bağlı olarak biyoyağ içerisinde en fazla bulunan 11 kimyasal maddeyi sınıflandırmaktadır. Üç temel bileşen oluşmuş, fakat bunların ilk ikisi toplam değişkenliğin %74’ünü açıklamıştır.  PCA’inde örnekler ve değişkenler (kimyasallar) sırasıyla 4 ve 2 farklı grupta toplanmıştır.  HCA’inde ise örnekler ve değişkenler 2 ana grup ve birkaç alt grupta toplanmıştır.  PCA ve HCA’nin her ikisinin sonuçları da örneklerde ve değişkenlerde açık bir gruplanmanın olduğunu göstermiştir.

Evaluation of bio-oil compounds of catalytic fast pyrolysis by multivariate analysis

The presence and amounts of chemicals in bio-oil produced by catalytic fast pyrolysis are affected by the process parameters, hence, the relationships between the chemicals and process parameters need to be investigated in detail by multivariate analysis techniques. The present work classifies the most available 11 chemicals in bio-oil based on the 24 samples (treatments) of catalytic fast pyrolysis experiments of municipal solid wastes by using principle components analysis (PCA) and hierarchical cluster analysis (HCA). There were 3 principle components (PCs), but the first 2 PCs explained 74% of the total variance.  The samples and variables (chemicals) were clustered into 4 and 2 different groups, respectively, in PCA. The samples and variables were clustered in 2 main groups and a few subgroups in HCA. Both PCA and HCA results showed that there was a clear grouping in the samples and variables.

___

  • Serrano-Ruiz JC, Dumesic JA. “Catalytic production of liquid hydrocarbon transportation fuels”. (In: Catalysis for Alternative Energy Generation, Edited by Guczi, L. and Erdohelyi, A.), Springer Science and Business Media, New York, USA, 2012.
  • Siedlecki M, de Jong W, Verkooijen AHM. “Fluidized bed gasification as a mature and reliable technology for the production of bio-syngas and applied in the production of liquid transportation fuels-A review”. Energies, 4, 389-434, 2011.
  • Bridgwater AV. “Review of fast pyrolysis of biomass and product upgrading”. Biomass & Bioenergy, 38, 68-94, 2012.
  • Mohan D, Pittman CU, Steele PH. “Pyrolysis of wood/biomass for bio-oil: A critical review”. Energy & Fuels, 20, 848-889, 2006.
  • Venderbosch RH, Prins W. “Fast pyrolysis technology development”. Biofuels, Bioproducts & Biorefining, 4, 178-208, 2010.
  • Bulushev DA, Ross JRH. “Catalysis for conversion of biomass to fuels via pyrolysis and gasification: A review”. Catalysis Today, 171, 1-13, 2011.
  • Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y. “Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions”. Applied Catalysis A: General, 470, 115-122, 2014.
  • Zhang Y, Xiao R, Gu X, Zhang H, Shen D, He G. “Catalytic pyrolysis of biomass with Fe/La/SBA-15 catalyst using TGA-FTIR analysis”. Bioresources, 9(3), 5234-5245, 2014.
  • Freel BA, Graham RG, Huffman DR. “Commercial aspects of rapid thermal processing (RTM)”. In: Bridgwater, A.V., Hogan, E. Editors: Bio-oil Production and Utilization. Newbury, UK, CPL Press, p. 86-95, 1996.
  • Gust S. “Combustion experiences of flash pyrolysis fuel in intermediate size boilers”. In: Bridgwater, A.V., Boocock, D.G.B., Editors. Developments in thermochemical biomass conversion. London, Blackie Academic & Professional, p. 481-488, 1997.
  • Chiaramonti D, Bonini A, Fratini E, Tondi G, Gartner K, Bridgwater AV. “Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 2: tests in diesel engines”. Biomass and Bioenergy, 25, 101-111, 2003.
  • Crayford AP, Bowen PJ, Kay PJ, Laget H. “Comparison of gas-oil and bio-oil spray performance for use in a gas turbine”. Proceedings of the ASME Turbo Expo, 659-667, 2010.
  • Czernik S, Bridgwater AV. “Applications of biomass fast pyrolysis oil”. Energy & Fuels, 18, 590-598, 2004.
  • Balat M. “An overview of the properties and applications of biomass pyrolysis oils”. Energy Sources Part A-Recovery, Utilization and Environmental Effects, 33(7), 674-689, 2011.
  • Esbensen KH, Guyot D, Westad F, Houmøller LP. In: K.H. Esbensen/with contributions from Dominique Guyot, Frank Westad, Lars P. Houmøller Editors: Multivariate Data Analysis: In practice: An İntroduction to Multivariate Data Analysis and Experimental Design. 5th ed. Camo Process AS, 2002.
  • Loska K, Wiechuya D. “Application of principle component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir”. Chemometry, 51, 723-733, 2003.
  • Aboytes-Ojeda M, Castillo-Villar KK, Yu TE, Boyer CN, English BC, Larson JA, Kline LM, Labbé N. “A principal component analysis in switchgrass chemical composition”. Energies, 913, 1-12, 2016.
  • Pattiya A, Titiloye JO, Bridgwater AV. “Evaluation of catalytic pyrolysis of cassava rhizome by principal component analysis”. Fuel, 89, 244-253, 2010.
  • Wang L, Wang C, Pan Z, Sun Y, Zhu X. “Application of pyrolysis-gas chromatography and hierarchical cluster analysis to the discrimination of the Chinese traditional medicine Dendrobium candidum Wall. ex Lindl”. Journal of Analytical and Applied Pyrolsis, 90, 13-17, 2011.
  • Liaw SS, Perez VH, Zhou S, Rodriguez-Justo O, Garcia-Perez M. “Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis”. Journal of Analytical and Applied Pyrolsis, 109, 140-151, 2014.
  • Ražić SS, Đogo SM, Slavković LJ. “Multivariate characterization of herbal drugs and rhizosphere soil samples according to their metallic content”. Microchemical Journal, 84, 93-101, 2006.
  • Galvao LS, Vitorello I. “Quantitative approach in the spectral reflectance-lithostratigraphy of the wind-river and Southern Bighorn Basins, Wyoming”. International Journal of Remote Sensing, 16(9), 1617-1631, 1995.
  • Dragovic S, Onjia A. “Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis”. Journal of Environmental Radioactivity, 89, 150-158, 2006.
  • Hair JR, Anderson RE, Tatham RL, Black WC. Multivariate Data Analysis with Readings. 4th ed. Englewood Cliffs, New Jersey, USA, Prentice Hall, 1995.
  • Klemetsrud B, Ukaew S, Thompson VS, Thompson DN, Klinger J, Li L, Eatherton D, Puengprasert P, Shonnard D. “Characterization of products from fast micropyrolysis of municipal solid waste biomass”. ACS Sustainable Chemistry and Engineering, 4, 5415-5423, 2016.
  • Zhou H, Long Y, Meng A, Li Q, Zhang Y. “Classification of municipal solid waste components for thermal conversion in waste-to-energy research”. Fuel, 145, 151-157, 2015.
  • Li J, Xia H, Wu Q, Hu Z, Hao Z, Zhu Z. “Hydrocracking of the crude oil from thermal pyrolysis of municipalwastes over bi-functional Mo–Ni catalyst”. Catalysis Today, 271, 172-178, 2016.
  • Ouadi M, Jaeger N, Greenhalf C, Santos J, Conti R, Hornung A. “Thermo-catalytic reforming of municipal solid waste”. Waste Management, 68, 198-206, 2017.