İnce agrega ile yer değiştirmiş olan CaCO3takviyeli ve takviyesiz polipropilenlerin geleneksel beton özelliklerine etkilerinin incelenmesi

Düşük yoğunluk değerine, yüksek ısı ve korozyon direncine sahip olan polipropilen gittikçe yapı malzemeleri sektörü için daha cazip hale gelmektedir.  Bununla birlikte polipropilenin tek başına kullanımı yapı malzemesinin mekanik dayanımını düşürmesi bakımından bazı dezavantajlar içerir. Polipropilenin yapı malzemeleri içerisindeki uygulamalarında bu dezavantajın ortadan kaldırılması için polipropilen kompozitleri tercih edilmektedir. Bu çalışmada, CaCO3 takviyeli polipropilen içeren betonun tanımlanan kalite ölçütleri sırası ile termal iletkenlik, elektrik direnci, 3, 7, 28 gün basınç dayanımları, 28 günlük yarmada çekme dayanımı ve su emme oranı olarak belirlenmiştir. Deneylerde ince agrega yerine %0, %10, %20, %30 ve %40 oranlarında CaCO3 takviyeli polipropilen kullanılmıştır. Dolgulu CaCO3/PP takviyeli beton özellikleri kontrol betonu ile kıyaslandığında %34.5 daha düşük 28 günlük basınç dayanımına, %24.7 oranında daha düşük termal iletkenliğe, %50.7 daha yüksek elektrik direncine sahiptir.

Examination of the effects of CaCO3 reinforced and unreinforced polypropylenes which is substituted with a fine aggregate on traditional concrete properties

Polypropylene with low density and high heat, corrosion resistance is becoming increasingly more attractive for the building materials sector. However, the use of polypropylene alone has some disadvantages in terms of reducing the mechanical strength of the building material. Polypropylene composites are preferred in order to eliminate this disadvantage in polypropylene construction materials applications. In this study, the thermal conductivity, electrical resistance, 3, 7, 28-day compressive strength, 28-day tensile strength and water absorption ratio of concrete containing CaCO3-reinforced polypropylene were determined as quality criteria. In the experiments, 0%, 10%, 20%, 30% and 40% of CaCO3 reinforced polypropylene was used instead of fine aggregate. The reinforced concrete properties of filled CaCO3/PP have a 28 day compressive strength of 34.5% lower than that of the control concrete, 24.7% lower thermal conductivity and 50.7% higher electrical resistance.

___

  • Ke F, Jiang X, Xu H, Ji J, Su Y. “Ternarynano-CaCO3/poly (ethyleneterephthalate) fiber/polypropylenevcomposites: Increased impact strength and reinforcing mechanism”. Composites Scienceand Technology, 72(5), 574-579, 2012.
  • Karamipour S, Ebadi-Dehaghani H, Ashouri D, Mousavian S. “Effect of nano-CaCO3 on rheological and dynamic mechanical properties of polypropylene: Experiments and models”. Polymer Testing, 30(1), 110-117, 2011.
  • Papageorgiou DG, Terzopoulou Z, Fina A, Cuttica F, Papageorgiou GZ, Bikiaris DN, Chrissafis K, Young RJ, Kinloch IA. “Enhanced thermal and fire retardancy properties of polypropylene Reinforced with a hybrid graphene/glass-fibre filler”. Composites Science and Technology, 116, 95-102, 2018.
  • Vilaseca F, Méndez JA, López JP, Vallejos, ME, Barberà L, Pèlach MA, Turon X, Mutjé P. “Recovered and recycled Kraft fibers as reinforcement of PP composites”. Chemical Engineering Journal, 138, 586-595, 2008.
  • Karmaker AC. “Effect of water absorption on dimensional stability and impact energy of jute fibre Reinforced polypropylene” Journal of Materials Science Letters, 16, 462-464, 1997.
  • Fallah S, Nematzadeh M. “Mechanical properties and durability of high-strength Concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume”. Construction and Building Materials, 132, 170-187, 2017.
  • Yang K, Yang Q, Li G, Sun Y, Feng D. “Mechanical properties and morphologies of polypropylene with different sizes of calcium carbonate particles”. Polymer Composites, 27, 443-450, 2006.
  • Ashenai Ghasemi F, Ghasemi I, Menbari S, Ayaz M, Ashori A. “Optimization of mechanical properties of polypropylene/talc/graphene Composites using response surface methodology”. Polymer Testing, 53, 283-292, 2016.
  • Beuguel Q, Ville J, Crepin-Leblond J, Mederic P, Aubry T. “Influence of clay mineral structure and polyamide polarity on the structural and morphological properties of clay polypropylene/polyamide nanocomposites”. Applied Clay Science, 135, 253-259, 2017.
  • Menbari S, Ashenai Ghasemi F, Ghasemi I. “Simultaneous improvement in the strength and toughness of polypropylene by incorporating hybrid graphene/CaCO3 reinforcement”. Polymer Testing, 54, 281-287, 2016.
  • Bakar AA, Rosli NNM. “Effect of nano–precipitated calcium carbonate on mechanical properties of PVC–U/acrylic blend”. Jurnal Teknologi, 45(1), 83-93, 2012.
  • Lapcik L, Jindrova P, Lapcikova B, Tamblyn R, Greenwood R, Rowson N. “Effect of the talc filler content on the mechanical properties of polypropylene composites”. Journal of Applied Polymer Science, 110, 2742-2747, 2008.
  • Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss A. “A comparison between bio-and mineral calcium carbonate on the properties of polypropylene composites”. Construction and Building Materials, 134, 549-555, 2017.
  • Xiong Z, Li Y, Pan L, Yu J, Lu S. “An analytical study of mechanical behavior of polypropylene/calcium carbonate Composites under uniaxial tension and three-point bending”. Composite Structures, 171, 370-381, 2017.
  • Nascimento EM, Eiras D, Pessan LA. “Effect of thermal treatment on impact resistance and mechanical properties of polypropylene/calcium carbonate nanocomposites”. Composites Part B: Engineering, 91, 228-234, 2016.
  • Maluk C, Bisby L, Terrasi GP. “Effects of polypropylene fibre type and dose on the propensity for heat-induced Concrete spalling”. Engineering Structures, 141, 584-595, 2017.
  • Yermak N, Pliya P, Beaucour AL, Simon A, Noumowé A. “Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties”. Construction and Building Materials, 132, 240-250, 2017.
  • Fallah S, Nematzadeh M. “Mechanical properties and durability of high-strength Concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume”. Construction and Building Materials, 132, 170-187, 2017.
  • Islam GS, Gupta SD. “Evaluating plastic shrinkage and permeability of polypropylene fiber Reinforced concrete”. International Journal of Sustainable Built Environment, 5(2), 345-354, 2016.
  • Kim HK, Park SJ, Han JI, Lee HK. “Microbially mediated calcium carbonate precipitation on normal and lightweight concrete”. Construction and Building Materials, 38, 1073-1082, 2013.
  • Amidi S, Wang J. “Surface treatment of Concrete bricks using calcium carbonate precipitation”. Construction and Building Materials, 80, 273-278, 2015.
  • Xuan D, Zhan B, Poon CS. “Assessment of mechanical properties of Concrete incorporating carbonated recycled Concrete aggregates”. Cement and Concrete Composites, 65, 67-74, 2016.
  • Lertwattanaruk P, Sua-iam G, Makul N. “Effects of calcium carbonate powder on the fresh and hardened properties of self-consolidating concrete incorporating untreated rice husk ash”. Journal of Cleaner Production, 172, 3265-3278, 2018.
  • Türk Standartları Enstitüsü. “Sertleşmiş beton deneyleri-Bölüm 3: Deney numunelerinde basınç dayanımının tayini”, Ankara, Türkiye, 12390-3, 2010.
  • Türk Standartları Enstitüsü. “Sertleşmiş beton deneyleri - Bölüm 6: Deney numunelerinin yarmada çekme dayanımının tayini”, Ankara, Türkiye, 12390-6, 2010.
  • Türk Standartları Enstitüsü. “Sertleşmiş beton deneyleri - Bölüm 7: Sertleşmiş beton yoğunluğunun tayini”.Ankara, Türkiye, 12390-7, 2010.
  • American Society for Testing and Materials International. “Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique)”. West Conshohocken, USA, C1113/M-09, 2013.
  • Wang H, Yang J, Liao H, Chen X. “Electrical and mechanical properties of asphalt Concrete containing conductive fibers and fillers”. Construction and Building Materials, 122, 184-190, 2016.
  • Lübeck A, Gastaldini ALG, Barin DS, Siqueira HC. “Compressive strength and electrical properties of Concrete with white Portland cement and blast-furnace slag”. Cement and Concrete Composites, 34(3), 392-399, 2012
  • Türk Standartları Enstitüsü. “Sertleşmiş beton deneyleri - Bölüm 1: Deney numunesi ve kalıplarının şekil, boyut ve diğer özellikleri”. Ankara, Türkiye, 12390-1, 2010.
  • Saikia N, de Brito J. “Mechanical properties and abrasion behaviour of Concrete containing shredded PET bottle waste as a partial substitution of natural aggregate”. Construction and Building Materials, 52, 236-244, 2014.
  • Fraternali F, Ciancia V, Chechile R, Rizzano G, Feo L, Incarnato L. “Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete”. Composite Structures, 93, 2368-2374, 2011.
  • Afroughsabet V, Ozbakkaloglu T. “Mechanical and durability properties of high-strength Concrete containing steel and polypropylene fibers”. Construction and Building Materials, 94, 73-82, 2015.