Hücresel kullanıcı ile eşzamanlı kanal paylaşan cihaz-cihaz haberleşmesi için kanal paylaşımı ve zamanlaması

Cihaz-Cihaz (CCH) haberleşmesi, gelecekteki 5G ağları için gelecek vaat eden teknolojilerden biridir. Hücresel şebekelerde CCH'nin kullanılması kapasite ve gecikme bakımından kazanç sağlamıştır. Bununla birlikte, CCH’nin hücresel kullanıcı ile ortak kanalı kullandığı durumda ana endişe, CCH kullanıcısı ve hücresel kullanıcı arasındaki karşılıklı girişimden dolayı hücresel kullanıcı için hizmet kalitesidir. Hücresel kullanıcının hizmet kalitesini (QoS) ihlal etmeden D2D haberleşmenin sağladığı kazançtan faydalanmak için kaynak paylaşımı önemli bir tasarım kriteridir. Bu çalışmada, Cihaz-Cihaz haberleşmesinin hücresel kullanıcının yukarı yönlü bağlantısını ortak kullandığı bir senaryoda kaynak paylaşım sorununu incelemek amacıyla bir optimizasyon modeli sunuyoruz. Önerilen modeli, birden çok CCH çiftinin bir hücresel kullanıcının yukarı bağlantı kaynağını paylaştığı örnek bir kaynak paylaşım senaryosu için kullanarak farklı parametre ayarları için gecikme ve toplam veri hızını inceliyoruz. Sonuç olarak, az sayıda D2D çiftinin hücresel kaynakları yeniden kullanmasının toplam veri hızı açısından önemli olduğunu gözlemledik.

Resource sharing and scheduling in device-to-device communication underlying cellular network

Device-to-Device (D2D) communication is one of the promising technology for the future 5G networks. Utilizing D2D in cellular networks has advantage in terms of capacity and delay. However, in D2D underlay cellular setting, the main concern is quality of service (QoS) for the cellular user due to the mutual interference between D2D user and the cellular user (CU). To utilize the gain brought by D2D setting without violating QoS of the CU, resource sharing is an important design criteria. To this end, we present an optimization model to investigate a resource sharing problem combined with scheduling in a D2D uplink underlay setting. We have used the proposed model to investigate an example resource sharing scenario, in which multiple D2D pairs share the uplink resource of CU, and identified delay and sum throughput for different parameter settings. We observed that there is a significant gain in terms of sum-throughput in allowing a small number of D2D pairs to re-use the cellular resources.

___

  • [1] Asadi A, Wang Q, Mancuso V. "A survey on device-todevice communication in cellular networks". IEEE Communications Surveys & Tutorials, 16(4), 1801-1819, 2014.
  • [2] Kazemi Rashed S, Shahbazian R, Ghorashi SA. “Learning‐ based resource allocation in D2D communications with QoS and fairness considerations”. Transactions on Emerging Telecommunications Technologies, 2018. https://doi.org/10.1002/ett.3249.
  • [3] Feng Zebing, Feng Zhiyong, Gulliver T Aaron. "Discrete location-aware resource allocation for underlay device-todevice communications in cellular networks". Communications IET, 11(16), 2482-2489, 2017.
  • [4] Pratas Nuno K, Popovski P. "Network-Assisted device-todevice (D2D) direct proximity discovery with underlay communication". IEEE 2015 Global Communications Conference, SanDiago, CA, USA, 6-10 December, 2015.
  • [5] Safdar GA, Ur-Rehman M, Muhammad M, Imran MA, Tafazolli R. "Interference mitigation in D2D communication underlaying LTE-A network". Access IEEE, 4(1), 7967-7987, 2016.
  • [6] Li J, Xia W, Shen L. “Delay-Aware resource control for device-to-device underlay communication systems”. Transactions on Emerging Telecommunications Technologies 2017. https://doi.org/10.1002/ett.2949 2017.
  • [7] Asheralieva A, Miyanaga Y. “Dynamic buffer status-based control for LTE-A network with underlay D2D communication”. IEEE Transactions on Communications, 64(3), 1342-1355, 2016.
  • [8] Wang W, Zhang F, Lau VKN. “Dynamic power control for delay-aware device-to-device communications”. IEEE Journal on Selected Areas in Communications, 33(1), 14-27, 2015.
  • [9] Hao Y, Ni Q, Li H and Hou S. "A general framework for spectral efficiency, energy efficiency and delay tradeoff in D2D networks". IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, 21-23 June 2017.
  • [10] Mi X, Zhao M, Xiao L, Zhou S and Wang J. "Delay-Aware resource allocation and power control for device-todevice communications". IEEE 2015 Wireless Communications and Networking Conference Workshops, New Orleans, LA, 9-12 March 2015.
  • [11] Huang S, Liang B and Li J. "Distributed interference and delay aware design for D2D communication in large wireless networks with adaptive interference estimation". IEEE Transactions on Wireless Communications, 16(6), 3924-3939, 2017.
  • [12] Sheng M, Li Y, Wang X, Li J and Shi Y. "Energy efficiency and delay tradeoff in device-to-device communications underlaying cellular networks". IEEE Journal on Selected Areas in Communications, 34(1), 92-106, 2016.
  • [13] Wang F, Li Y, Wang Z, Yang Z. “Social-Community-Aware resource allocation for D2D communications underlaying cellular networks”. IEEE Transactions on Vehicular Technology, 65(5), 3628-3640, 2016.
  • [14] Huynh T, Onuma T, Kuroda K, Hasegawa M, Hwang WJ. “Joint downlink and uplink interference management for device to device communication underlaying cellular networks”. IEEE Access, 4(1), 4420-4430, 2016.
  • [15] Yang Z, Huang N, Xu H, Pan Y, Li Y, Chen M. “Downlink resource allocation and power control for device-todevice communication underlaying cellular networks”. IEEE Communication Letters, 20(7), 1449-1452, 2016.
  • [16] Zhang X and Zhu Q. "D2D offloading for statistical QoS provisionings Over 5G multimedia mobile wireless networks". IEEE 2019 Conference on Computer Communications, Paris, France, 29 April-2 May 2019.
  • [17] Xu Y. "On the performance of device-to-device communications with delay constraint". IEEE Transactions on Vehicular Technology, 65(11), 9330-9344, 2016.