Farklı sıkıştırma oranı ve motor momentlerinde direkt püskürtmeli bir dizel motorun yanma odasında ısı geçişinin incelenmesi

Yanma gazları ve yanma odası duvarları arasında meydana gelen ısı geçişi, emisyonları ve motor performansını etkilediğinden dolayı önemli bir konudur. Diğer taraftan, silindir içi ısı geçişine etki eden birçok motor çalışma parametresi bulunmaktadır. Bunlar arasında motor momenti ve sıkıştırma oranı motor ısı transferinde oldukça etkilidir. Bu sebeple, bu çalışmada sıkıştırma ateşlemeli bir motorda yanma gazları ve yanma odası duvarları arasında meydana gelen ısı transferine motor momenti ve sıkıştırma oranının etkileri incelenmiştir. Yanma odasında genel ısı taşınım katsayısı hesaplanması için literatürde sıklıkla kullanılan Hohenberg, Woschni, Nusselt, Eichelberg ve SitkeiRamanaiah bağıntıları kullanılmıştır. Ayrıca, çalışmada çeşitli ısı transferi karakteristikleri (ısı akısı, yanma odası elemanlarında ısı kaybı, birim krank açısında ısı geçişi değişimi) değerlendirilmiştir. Yapılan çalışmada, sıkıştırma oranı ve motor momentinin, ısı taşınım katsayısını ve ısı akısını önemli oranda etkilediği görülmektedir. SitkeiRamanaiah bağıntısıyla hesaplanan ısı geçişi karakteristikleri en yüksek değerleri verirken Eichelberg bağıntısı en düşük değerleri vermiştir. Yanma odasında en fazla ısı kaybı pistonda oluşmuştur.

Investigation of heat transfer in combustion chamber of a direct injection diesel engine under different compression ratios and engine torques

The heat transfer between gases and combustion chamber walls is an important issue because of affecting the emissions and engine performance. On the other hand, there are a number of engine operation parameters impacting on the in-cylinder heat transfer. Of these parameters, compression ratio and engine torque are of significant influence on the engine heat transfer. For this reason, in this study the effects of compression ratio and engine torque on the heat transfer between gases and combustion chamber walls in a compression ignition engine were studied. The most used correlations such as Hohenberg, Woschni, Nusselt, Eichelberg, and Sitkei-Ramanaiah were used to calculate the overall convective heat transfer coefficient in the combustion chamber. Moreover, various heat transfer characteristics (heat flux, heat loss in combustion chamber parts, heat transfer rate) were evaluated in this study. In the performed study, it was shown that compression ratio and engine torque affected significantly the heat transfer coefficient and heat flux. While heat transfer characteristics calculated by Sitkei-Ramanaiah correlation had the highest value, Eichelberg correlation had the lowest values. The most transferred heat among the combustion chamber parts occurred in the piston.

___

  • [1] Finol CA, Robinson K. “Thermal modelling of modern engines: a review of empirical correlations to estimate the in-cylinder heat transfer coefficients”. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(12), 1765-1781, 2006.
  • [2] Lounici MS, Tazerout M, Balistrou M. “Heat transfer correlation choice for two-zone combustion model optimization in the case of natural gas SI engines”. 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Antalya, Turkey, 19-21 July 2010.
  • [3] Rakopoulos CD, Kosmadakis GM, Pariotis EG. “Critical evaluation of current heat transfer models used in CFD incylinder engine simulations and establishment of a comprehensive wall-function formulation”. Applied Energy, 87, 1612-1630, 2010.
  • [4] Abraham J, Magi V. “Modeling radiant heat loss characteristics in a diesel engine”. Society of Automotive Engineering, Journal of Engines, 106(3), 93-100, 1997.
  • [5] Alkidas AC, Cole RM. “Heat losses from a divided-chamber diesel engine”. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 197(3), 151-158, 1983.
  • [6] Karamangil MI, Kaynakli O, Surmen A. “Parametric investigation of cylinder and jacket side convective heat transfer coefficients of gasoline engines”. Energy Conversion Management, 47(6), 800-816, 2006.
  • [7] Enomoto Y, Aoki Y, Emi M, Kimura S. “Heat transfer coefficient on the combustion chamber wall surfaces in a naturally aspirated direct-injection diesel engine”. International Journal of Engine Research, 15(5), 606-625, 2014.
  • [8] Rashedul HK, Kalam MA, Masjuki HH, Ashraful AM, Imtenan S, Sajjad H, Wee LK. “Numerical study on convective heat transfer of a spark ignition engine fueled with bioethanol”. International Communications in Heat and Mass Transfer, 58, 33-39, 2014.
  • [9] Demuynck J, Verhelst S, De Paepe M, Huisseune H, Sierens R. “Evaluation of heat transfer models with measurements in a hydrogen-fuelled spark ignition engine”. Proceedings of the 14th International Heat Transfer Conference, Washington, USA, 8-13 August 2010.
  • [10] Dabbaghi MF, Baharom MB, Abdul Karim ZA, Aziz ARA, Muhammed SE, Zainal EZA. “Comparative evaluation of different heat transfer correlations on a single curvedcylinder spark ignition crank-rocker engine”. Alexandria Engineering Journal, 60(3), 2963-2978, 2021.
  • [11] Lounici MS, Loubar K, Balistrou M, Tazerout M. “Investigation on heat transfer evaluation for a more efficient two-zone combustion model in the case of natural gas SI engines”. Applied Thermal Engineering, 31(2-3), 319-328, 2011.
  • [12] Fadungez JLS, Sari RL, Martins MES, Salau NPG. “Comparative analysis of different heat transfer correlations in a two zone combustion model applied on a SI engine fueled with wet ethanol”. Applied Thermal Engineering, 115, 22-32, 2017.
  • [13] Wu YY, Chen BC, Hsieh FC. “Heat transfer model for smallscale air cooled spark ignition four stroke engines”. International Journal of Heat and Mass Transfer, 49(21-22), 3895-3905, 2006.
  • [14] Hensel S, Sarikoc F, Schumann F, Kubach H, Spicher U. “Investigations on the heat transfer in HCCI gasoline engines”. Society of Automotive Engineering International Journal of Engines, 2(1), 1601-1616, 2009.
  • [15] Heywood JB. Internal Combustion Engine Fundamentals. 1st ed. USA, McGraw-Hill Press, 1988.
  • [16] Suzuki Y, Shimano K, Enomoto Y, Emi M, Yamada Y. “Direct heat loss to combustion chamber walls in a directinjection diesel engine: evaluation of direct heat loss to piston and cylinder head”. International Journal of Engine Research, 6(2), 119-135, 2005.
  • [17] Luo X, Yu X, Jansons M. “Simultaneous in-cylinder surface temperature measurements with thermocouple, laserinduced phosphorescence, and dual wavelength infrared diagnostic techniques in an optical engine”. Society of Automotive Engineering Technical Paper 2015-01-1658, 2015.
  • [18] Eichelberg G. “Some new investigations on old combustion engine problems”. Engineering, 148(1-2), 446-463, 1939.
  • [19] Shudo T, Suzuki H. “Applicability of heat transfer equations to hydrogen combustion”. Society of Automotive Engineers of Japan, 23, 303-308, 2002.
  • [20] Parra CAF. Heat Transfer Investigations in Modern Diesel Engine. PhD Thesis. Bath University, Somerset, England, 2008.
  • [21] Choi W, Song HH. “Composition-considered Woschni heat transfer correlation: Findings from the analysis of overexpected engine heat losses in a solid oxide fuel cellinternal combustion engine hybrid system”. Energy, 2020. https://doi.org/10.1016/j.energy.2020.117851
  • [22] Borman G, Nishiwaki K. “Internal combustion engine heat transfer”. Progress in Energy and Combustion Science, 13, 1-46, 1987.
  • [23] Woschni G. “A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine”. Society of Automotive Engineering Technical Paper, 1967, https://doi.org/10.4271/670931
  • [24] Chang J, Güralp O, Filipi Z, Assanis D, Kuo T, Najt P, Rask R. “New heat transfer correlation for an HCCI engine derived from measurements of instantaneous surface heat flux”. Society of Automotive Engineering Technical Paper, 2004, https://doi.org/10.4271/2004-01-2996
  • [25] Watson N, Janota MS. Turbocharging the Internal Combustion Engine. 1st ed. London and Basingstoke, UK, The Macmillan Press, 1982.
  • [26] Zak Z, Emrich M, Takats M, Macek J. “In-Cylinder heat transfer modeling”. Journal of Middle European Construction and Design of Cars, 14(3), 2-10, 2016.
  • [27] Sitkei G, Ramanaiah GV. “A rational approach for calculation of heat transfer in diesel engines”. Society of Automotive Engineering Technical Paper, 1972, https://doi.org/10.4271/720027
  • [28] Hohenberg GF. “Advanced approaches for heat transfer calculations”. Society of Automotive Engineering Technical Paper, 1979, https://doi.org/10.4271/790825
  • [29] Jafari A, Hannani SK. “Effect of fuel and engine operational characteristics on the heat loss from combustion chamber surfaces of SI engines”. International Journal of Heat and Mass Transfer, 33, 122-134, 2006.
  • [30] Sekmen Y, Erduranlı P, Gölcü M, Salman MS. “Buji ile ateşlemeli motorlarda sıkıştırma oranı değişiminin performans parametrelerine etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 23-30, 2005.
  • [31] Sekmen Y, Erduranlı P, Akbaş A, Salman MS. “Sıkıştırma oranı değişiminin buji ile ateşlemeli motorlarda yakıt tüketimine etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 8(2), 139-148, 2002.
  • [32] Parlak A. “Bir dizel motorunda sıkıştırma oranı artışının performansa etkisi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 171-177, 2003.
  • [33] Sanli A, Sayin C, Gumus M, Kilicaslan I, Canakci M. “Numerical evaluation by models of load and spark timing effects on the in-cylinder heat transfer of a SI engine”. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 56(5), 444-458, 2009.
  • [34] Sanli A, Ozsezen AN, Kilicaslan I, Canakci M. “The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine”. Applied Thermal Engineering, 28(11-12), 1395-1404, 2008.
  • [35] Rakopoulos CD, Mavropoulos GC, Hountalas DT. “Experimental evaluation of local instantaneous heat transfer characteristics in the combustion chamber of an air-cooled direct injection diesel engine”. Energy, 33(7), 1084-1099, 2008.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Mavi yaka performans değerlendirmesinde kullanılacak ölçütlerin belirlenmesi için AHP temelli bir matematiksel model

Büşra TUTUMLU, Tuğba SARAÇ, Müjgan SAĞIR

Engelli akış ölçerlerin teorik yöntemler ve hesaplamalı akışkanlar dinamiği ile tasarımı, performanslarının deneysel incelenmesi

Hasan KÜÇÜK, Murat ÜNVERDİ

Madencilikte bir yedek parça envanter optimizasyonu çalışması

Sena ŞENSES, Onur GÖLBAŞI, İsmail Serdar BAKAL

Farklı sıkıştırma oranı ve motor momentlerinde direkt püskürtmeli bir dizel motorun yanma odasında ısı geçişinin incelenmesi

Ali ŞANLI, Metin GÜMÜŞ

Yeni bir dairesel sezgisel bulanık AHP&VIKOR metodolojisi: Çok uzmanlı tedarikçi değerlendirme problemine uygulama

Cengiz KAHRAMAN, İrem OTAY

AHP, ARAS ve bulanık TOPSIS ile yeni şube yeri seçimi: Denizcilik sektöründe bir tedarikçi firma örneği

Abdülsamet KARA, Ahmet MASRİ, Gülsüm Kübra KAYA

Kaynak atölyesi çizelgeleme probleminin değişken iş istasyonu kısıtlaması altında optimizasyonu: Arena simülasyonu tabanlı genetik algoritma ile endüstriyel bir uygulama

Aslan Deniz KARAOGLAN

Yeni bir dairesel sezgisel bulanık AHP&VIKOR metodolojisi: Çok uzmanlı tedarikçi değerlendirme problemine uygulama

İrem OTAY, Cengiz KAHRAMAN

Ön gerilmeli eğri ince plakanin titreşim analizi

Can GONENLI, Hasan OZTURK, Oguzhan DAS

Karbon nanotüp ile güçlendirilmiş cam fiber/epoksi ve karbon fiber/epoksi kompozit borusal yapıların yarı-statik ezilme ve enerji emilimi davranışlarının incelenmesi

Yasin YILMAZ, Hasan ÇALLIOĞLU, Ali BALBAY